Solveeit Logo

Question

Mathematics Question on Determinants

If the points (x1x_1, y1y_1), (x2x_2, y2y_2) and (x3x_3, y3y_3) are collinear, then the rank of the matrix [x1y;11 x2y;21 x3y;31]\begin{bmatrix}x_{_1}&y;_{_1}&1\\\ x_{_2}&y;_{_2}&1\\\ x_{_3}&y;_{_3}&1\end{bmatrix}will always be less than

A

3

B

2

C

1

D

None of these

Answer

2

Explanation

Solution

The given matrix is [x1y;11 x2y;21 x3y;31]\begin{bmatrix}x_{_1}&y;_{_1}&1\\\ x_{_2}&y;_{_2}&1\\\ x_{_3}&y;_{_3}&1\end{bmatrix}
using R2R2R1,R3R3R1R_{_2}\to R_{_2}-R_{_1}, R_{_3} \to R_{_3}-R_{_1}
Δ=[x1y11 x2x1y;2y10 x3x1y;3y10]=0\Delta=\begin{bmatrix} x_{_1 } & y_{_1} &1\\\ x_{_2}-x_{_1}&y;_{_2}-y_{_1}&0\\\ x_{_3}-x_{_1}&y;_{_3}-y_{_1}&0\end{bmatrix}=0
((\because points are collinear i.e., area of triangle =0 )
x2x1y;2y1 x3x1y;3y1=0\Rightarrow \begin{vmatrix}x_{_2}-x_{_1}&y;_{_2}-y_{_1}\\\ x_{_3}-x_{_1}&y;_{_3}-y_{_1}\end{vmatrix}=0
So, the rank of matrix is always less than 22.