Question
Question: If the points whose position, vectors are \(3\mathbf{i} - 2\mathbf{j} - \mathbf{k},\) \(2\mathbf{i} ...
If the points whose position, vectors are 3i−2j−k, 2i+3j−4k, −i+j+2kand 4i+5j+λk lie on a plane, then λ=
A
−17146
B
17146
C
−14617
D
14617
Answer
−17146
Explanation
Solution
Leta=3i−2j−k,b=2i+3j−4k,c=−i+j+2k and
d=4i+5j+λk.
Since the points are coplanar,
So, [dbc]+[dca]+[dab]=[abc]
4 & 5 & \lambda \\ 2 & 3 & - 4 \\ - 1 & 1 & 2 \end{matrix} \right| + \left| \begin{matrix} 4 & 5 & \lambda \\ - 1 & 1 & 2 \\ 3 & - 2 & - 1 \end{matrix} \right| + \left| \begin{matrix} 4 & 5 & \lambda \\ 3 & - 2 & - 1 \\ 2 & 3 & - 4 \end{matrix} \right|$$ $$= \left| \begin{matrix} 3 & - 2 & - 1 \\ 2 & 3 & - 4 \\ - 1 & 1 & 2 \end{matrix} \right|$$ $$\Rightarrow 40 + 5\lambda + 37 - \lambda + 94 + 13\lambda = 25 \Rightarrow \lambda = \frac{- 146}{17}.$$