Solveeit Logo

Question

Question: If the points of local extremum of \[f(x) = {x^3} - 3a{x^2} + 3({a^2} - 1)x + 1\] lies between -2 an...

If the points of local extremum of f(x)=x33ax2+3(a21)x+1f(x) = {x^3} - 3a{x^2} + 3({a^2} - 1)x + 1 lies between -2 and 4 , then ‘a’ belongs to
A. (2,2)( - 2,2)
B. (,1)(3,)( - \infty , - 1) \cup (3,\infty )
C. (1,3)( - 1,3)
D. (3,)(3,\infty )

Explanation

Solution

To find the points of the local extremum, first, we need to differentiate the given function f(x)f(x) . The differential equation we get by differentiating f(x)f(x) will lead us to 4 more new equations.
(1) D>0D > 0
(2) f(2)>0f'( - 2) > 0
(3) f(4)>0f'(4) > 0
(4) 2<B2A<4 - 2 < \dfrac{{ - B}}{{2A}} < 4
We have to solve these equations and then compare all four results to observe the coinciding range of a to get to the final answer.

Complete step by step solution:
The given function f(x)f(x) is
f(x)=x33ax2+3(a21)x+1f(x) = {x^3} - 3a{x^2} + 3({a^2} - 1)x + 1 … (1)

We know that,
dxndx=nxn1\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}

Hence, differentiating (1) with respect to x, we get
f(x)=3x26ax+3(a21)\Rightarrow f'(x) = 3{x^2} - 6ax + 3({a^2} - 1)
Taking 3 common we get,
f(x)=3(x22ax+a21)\Rightarrow f'(x) = 3({x^2} - 2ax + {a^2} - 1) … (2)

Now, since roots of (2) are real and distinct and the points of local extremum lie between -2 and 4, we get
D>0D > 0 … (3)
f(2)>0f'( - 2) > 0 … (4)
f(4)>0f'(4) > 0 … (5)
2<B2A<4- 2 < \dfrac{{ - B}}{{2A}} < 4 … (6)

We have x22ax+a21{x^2} - 2ax + {a^2} - 1 , where A=1,B=(2a),C=a21A = 1,\,B = ( - 2a)\,,\,C = {a^2} - 1

Using D>0D > 0 , we get
B24AC>0\Rightarrow {B^2} - 4AC > 0
On substituting the values of A, B, and C, we get,
4a24(a21)>0\Rightarrow 4{a^2} - 4({a^2} - 1) > 0
On simplification we get,
4a24a2+4>0\Rightarrow 4{a^2} - 4{a^2} + 4 > 0
Hence we get,
4>0\Rightarrow 4 > 0

So for any real value of a, the equation is satisfied, hence
aR\Rightarrow a \in R …. (7)

Using f(2)>0f'( - 2) > 0 , we get
3((2)22a(2)+a21)>0\Rightarrow 3({( - 2)^2} - 2a( - 2) + {a^2} - 1) > 0
On simplification we get,
4+4a+a21>0\Rightarrow 4 + 4a + {a^2} - 1 > 0
On adding like terms we get,
a2+4a+3>0\Rightarrow {a^2} + 4a + 3 > 0

Solving by middle term split, we get
a2+a+3a+3>0\Rightarrow {a^2} + a + 3a + 3 > 0
On taking factors common we get,
a(a+1)+3(a+1)>0\Rightarrow a(a + 1) + 3(a + 1) > 0
On taking (a+1)(a + 1) common we get,
(a+1)(a+3)>0\Rightarrow (a + 1)(a + 3) > 0

Hence, a[3,1]a \notin [ - 3, - 1] , so
a<\-3a < \- 3 and a>1a > - 1 … (8)

Using f(4)>0f'(4) > 0 , we get
3(422a×4+a21)>0\Rightarrow 3({4^2} - 2a \times 4 + {a^2} - 1) > 0
On simplification we get,
168a+a21>0\Rightarrow 16 - 8a + {a^2} - 1 > 0
On adding like terms we get,
a28a+15>0\Rightarrow {a^2} - 8a + 15 > 0

Solving by middle term split, we get
a23a5a+15>0\Rightarrow {a^2} - 3a - 5a + 15 > 0
On taking factors common we get,
a(a3)5(a3)>0\Rightarrow a(a - 3) - 5(a - 3) > 0
On taking (a3)(a - 3) common we get,
(a3)(a5)>0\Rightarrow (a - 3)(a - 5) > 0 … (9)

Hence, a[3,5]a \notin [3,5] , so
a<3a < 3 and a>5a > 5

Using 2<B2A<4 - 2 < \dfrac{{ - B}}{{2A}} < 4 , we get
On substituting the value of A and B we get,
2<2a2<4\Rightarrow - 2 < \dfrac{{2a}}{2} < 4
On simplification we get,
2<a<4\Rightarrow - 2 < a < 4 … (10)

Now, using (7), (8), (9), (10), we get the coinciding range of a as
1<a<3\Rightarrow - 1 < a < 3

Hence, the final answer is C.

Note:
In the above equation, we can get a rough idea of local extremums by trying to observe the equation of f(x)f'(x) . In the above question, if try to observe the equation f(x)=3(x22ax+a21)f'(x) = 3({x^2} - 2ax + {a^2} - 1) , we can easily interpret that the given equation is an equation of parabola of the type x2=4ay'{x^2} = 4ay' . Hence it opens upwards, so we can say that the curve at its extremums i.e -2 and 4 is positive. That’s how we got these two equations:
(1) f(2)>0f'( - 2) > 0
(2) f(4)>0f'(4) > 0