Solveeit Logo

Question

Mathematics Question on Determinants

If the points (a1,b1)\left(a_{1}, b_{1}\right), (a2,b2)\left(a_{2}, b_{2}\right) and (a1+a2,b1+b2)\left(a_{1} + a_{2}, b_{1} + b_{2}\right) are collinear, then

A

a1b2=a2b1a_{1}b_{2}=a_{2}b_{1}

B

a1+a2=b1+b2a_{1}+ a_{2} = b_{1} + b_{2}

C

a2b2=a1b1a_{2}b_{2}=a_{1}b_{1}

D

a1+b1=a2+b2a_{1}+b_{1}=a_{2}+b_{2}

Answer

a1b2=a2b1a_{1}b_{2}=a_{2}b_{1}

Explanation

Solution

The given points are collinear. 12a1b11 a2b21 a1+a2b1+b21=0\therefore\quad\frac{1}{2}\left|\begin{matrix}a_{1}&b_{1}&1\\\ a_{2}&b_{2}&1\\\ a_{1}+a_{2}&b_{1}+b_{2}&1\end{matrix}\right|=0 Applying R2R2R1,R3R3R1R_{2}\rightarrow R_{2}- R_{1}, R_{3}\rightarrow R_{3}- R_{1}, we get a1b11 a2a1b2b10 a2b20=0\left|\begin{matrix}a_{1}&b_{1}&1\\\ a_{2}-a_{1}&b_{2}-b_{1}&0\\\ a_{2}&b_{2}&0\end{matrix}\right|=0 Expanding along C3C_{3}, we get b2(a2a1)a2(b2b1)=0b_{2}\left(a_{2}-a_{1}\right)-a_{2}\left(b_{2}-b_{1}\right)=0 a1b2+a2b1=0a1b2=a2b1\Rightarrow\quad-a_{1}b_{2}+a_{2}b_{1}=0 \Rightarrow a_{1}b_{2}=a_{2}b_{1}