Solveeit Logo

Question

Question: If the points \(\left( 1,1,\lambda \right)\) and \(\left( -3,0,1 \right)\) are equidistant from the ...

If the points (1,1,λ)\left( 1,1,\lambda \right) and (3,0,1)\left( -3,0,1 \right) are equidistant from the plane 3x+4y12x+13=03x+4y-12x+13=0, then λ\lambda satisfies the equation:
(a) 3x2+10x+7=03{{x}^{2}}+10x+7=0
(b) 3x2+7x7=03{{x}^{2}}+7x-7=0
(c) 3x210x+7=03{{x}^{2}}-10x+7=0
(d) 3x2+10x7=03{{x}^{2}}+10x-7=0

Explanation

Solution

Hint: Find the distance of (3,0,1)\left( -3,0,1 \right) from the given plane and equate this with the distance of points (1,1,λ)\left( 1,1,\lambda \right) from the plane using the formula: distance of the point (x1,y1,z1)\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right) from the plane ax+by+cz+d=0ax+by+cz+d=0 is given as ax1+by1+cz1+da2+b2+c2\left| \dfrac{a{{x}_{1}}+b{{y}_{1}}+c{{z}_{1}}+d}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right| . You will get an equation in λ\lambda . Solve to get the value of λ\lambda .
Complete step-by-step answer:
Given plane is 3x+4y12z+13=03x+4y-12z+13=0 and the points whose distance are equal from this plane are (1,1,λ)\left( 1,1,\lambda \right) and (3,0,1)\left( -3,0,1 \right).
Let us first calculate distance of point (3,0,1)\left( -3,0,1 \right) from plane 3x+4y12z+13=03x+4y-12z+13=0-
We know that the distance of the point (x1,y1,z1)\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right) from the plane ax + by + cz + d = 0 is given as ax1+by1+cz1+da2+b2+c2\left| \dfrac{a{{x}_{1}}+b{{y}_{1}}+c{{z}_{1}}+d}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right| . So, the distance of (3,0,1)\left( -3,0,1 \right) from 3x+4y12z+13=03x+4y-12z+13=0
=3(3)+4(0)12(1)+13(3)2+(4)2+(12)2=\left| \dfrac{3\left( -3 \right)+4\left( 0 \right)-12\left( 1 \right)+13}{\sqrt{{{\left( 3 \right)}^{2}}+{{\left( 4 \right)}^{2}}+{{\left( -12 \right)}^{2}}}} \right|
=912+139+16+144=8169=813=\left| \dfrac{-9-12+13}{\sqrt{9+16+144}} \right|=\left| \dfrac{-8}{\sqrt{169}} \right|=\dfrac{8}{13}
Now, let us calculate the distance of point (1,1,λ)\left( 1,1,\lambda \right) from the plane in terms of λ\lambda .
Distance of (1,1,λ)\left( 1,1,\lambda \right) from 3x+4y12z+13=03x+4y-12z+13=0
=3(1)+4(1)12(λ)+139+16+144 =3+412λ+13169=2012λ13 =2012λ13 \begin{aligned} & =\left| \dfrac{3\left( 1 \right)+4\left( 1 \right)-12\left( \lambda \right)+13}{\sqrt{9+16+144}} \right| \\\ & =\left| \dfrac{3+4-12\lambda +13}{\sqrt{169}} \right|=\left| \dfrac{20-12\lambda }{13} \right| \\\ & =\left| \dfrac{20-12\lambda }{13} \right| \\\ \end{aligned}
We are given that both the points are equidistant from the plane.
2012λ13=813\Rightarrow \left| \dfrac{20-12\lambda }{13} \right|=\dfrac{8}{13}
Multiplying both the sides of equation by 13, we will get-
2012λ=8\left| 20-12\lambda \right|=8
These are two possible cases: 1. 2012λ020-12\lambda \ge 0 and
2. 2012λ<020-12\lambda <0
Case I: 2012λ020-12\lambda \ge 0
So, modulus will open with +ve sign and we will get-
2012λ=820-12\lambda =8
Taking constants to same side, we will get-
12λ=820\Rightarrow -12\lambda =8-20
12λ=12\Rightarrow -12\lambda =-12
Multiplying both sides of equations by “-1”, we will get-
12λ=12\Rightarrow 12\lambda =12
Now dividing both sides of equation by 12, we will get-
λ=1\Rightarrow \lambda =1
Case II: 2012λ<020-12\lambda <0
So, modulus will open with negative sign and we will get-
(2012λ)=8 20+12λ=8 \begin{aligned} & -\left( 20-12\lambda \right)=8 \\\ & \Rightarrow -20+12\lambda =8 \\\ \end{aligned}
Taking constants to same side of equation, we will get-
12λ=8+20\Rightarrow 12\lambda =8+20
12λ=28\Rightarrow 12\lambda =28
λ=2812\Rightarrow \lambda =\dfrac{28}{12}
Dividing side by 4, we will get-
λ=73\Rightarrow \lambda =\dfrac{7}{3}
So, we have got two values of λ\lambda : λ=73\lambda =\dfrac{7}{3}\, and λ=1\lambda =1.
We have to form a quadratic equation whose roots are 1 and 73\dfrac{7}{3}.
We know, a quadratic equation can be written as: x2(α+β)x+αβ=0{{x}^{2}}-\left( \alpha +\beta \right)x+\alpha \beta =0
Where αandβ\alpha \,and\,\beta are two roots of the required equation.
So, the required equation will be:
x2(1+73)x+(1)(73)=0 x2(103)x+73=0 \begin{aligned} & {{x}^{2}}-\left( 1+\dfrac{7}{3} \right)x+\left( 1 \right)\left( \dfrac{7}{3} \right)=0 \\\ & \Rightarrow {{x}^{2}}-\left( \dfrac{10}{3} \right)x+\dfrac{7}{3}=0 \\\ \end{aligned}
On multiplying both sides of equation by 3, we will get-
3x210x+7=0×3 3x210x+7=0 \begin{aligned} & \Rightarrow 3{{x}^{2}}-10x+7=0\times 3 \\\ & \Rightarrow 3{{x}^{2}}-10x+7=0 \\\ \end{aligned}
Hence λ\lambda will satisfy the equation 3x210x+7=03{{x}^{2}}-10x+7=0 and option(c) is the correct answer.

Note: Students can do mistake by not considering the two cases while solving the equation12012λ=8\left| 120-12\lambda \right|=8. While solving an equation which involves modulus function, we should always consider two equations that the function inside modules may be greater than equal to zero or may be less than zero.