Solveeit Logo

Question

Question: If the points \[\left( {0,0} \right),\left( {2,0} \right),(0, - 2)\] and \[(k, - 2)\;\]are concyclic...

If the points (0,0),(2,0),(0,2)\left( {0,0} \right),\left( {2,0} \right),(0, - 2) and (k,2)  (k, - 2)\;are concyclic then k=k =
A. 22
B. 2 - 2
C. 00
D. 11

Explanation

Solution

Hint : Consider the points as coordinates of square

Assume a square ABCD
Since the center of the square is mid point of the diagonal. So it will divide the diagonal in ratio 1:1.
This is a cyclic quadrilateral. In line segmentAC\,\,AC, let O(x,y)O(x,y) be midpoint. Then by section formula the ratio between AO:OC = 1:1.
The coordinates of O is == \left\\{ {\left( {\frac{{n{x_1} + m{x_2}}}{{m + n}}} \right),\left( {\dfrac{{n{y_1} + m{y_2}}}{{m + n}}} \right)} \right\\}
\Rightarrow (x,y) = \left\\{ {\left( {\dfrac{{1(0) + 1(0)}}{{1 + 1}}} \right),\left( {\dfrac{{1(0) + 1( - 2)}}{{1 + 1}}} \right)} \right\\} \\\ \Rightarrow (x,y) = (0, - 1) \\\
∴ Coordinates of OO is (0,1)(0, - 1)
Now line segment BD,OBD,O is the midpoint
BO:OD=1:1BO:OD = 1:1
The coordinates of O=O = {(nx1+mx2m+n),(ny1+my2m+n)}\left\{ {\left( {\dfrac{{n{x_1} + m{x_2}}}{{m + n}}} \right),\left( {\dfrac{{n{y_1} + m{y_2}}}{{m + n}}} \right)} \right\}

(0,1)=(1×2+1×k1+1,1×0+1×(2)1+1) (0,1)=(2+k2,1)   \Rightarrow (0, - 1) = \left( {\dfrac{{1 \times 2 + 1 \times k}}{{1 + 1}},\dfrac{{1 \times 0 + 1 \times ( - 2)}}{{1 + 1}}} \right) \\\ \Rightarrow (0, - 1) = \left( {\dfrac{{2 + k}}{2}, - 1} \right) \\\ \\\
From here we can say
2+k2=0 k=2  \dfrac{{2 + k}}{2} = 0 \\\ k = - 2 \\\
Hence the correct option is B.

Note :- In this question we have considered that those are the coordinates of a square. Now taking two diagonals of a square as we know the center of a square is the midpoint of both the diagonals from this midpoint we know the ratio will be 1:1 by this concept we have solved and got the value of k.