Question
Question: If the points \((k,2 - 2k)\), \((1 - k,\ 2k)\) and \(( - k - 4,\ 6 - 2k)\) be collinear, then the po...
If the points (k,2−2k), (1−k, 2k) and (−k−4, 6−2k) be collinear, then the possible values of k are.
A
21,−1
B
1,−21
C
1,−2
D
2,−1
Answer
21,−1
Explanation
Solution
The points are collinear if the area of triangle formed by these three points is zero.
⇒21[k{2k−(6−2k)}+(1−k){(6−2k)−(2−2k)} +(−4−k){(2−2k)−2k}]=0
On simplification, we get k=−1 or 21.