Solveeit Logo

Question

Question: If the points \((a,b),(a',b')\) and \((a - a',b - b')\) are collinear, then....

If the points (a,b),(a,b)(a,b),(a',b') and (aa,bb)(a - a',b - b') are collinear, then.

A

ab=abab' = a'b

B

ab=abab = a'b'

C

aa=bbaa' = bb'

D

a2+b2=1a^{2} + b^{2} = 1

Answer

ab=abab' = a'b

Explanation

Solution

aaaaa=bbbbb\frac { a - a ^ { \prime } - a ^ { \prime } } { a ^ { \prime } - a } = \frac { b - b ^ { \prime } - b ^ { \prime } } { b ^ { \prime } - b }

a2aaa=b2bbb\Rightarrow \frac { a - 2 a ^ { \prime } } { a ^ { \prime } - a } = \frac { b - 2 b ^ { \prime } } { b ^ { \prime } - b } aa=bbab=ab\Rightarrow \frac { a } { a ^ { \prime } } = \frac { b } { b ^ { \prime } } \Rightarrow a b ^ { \prime } = a ^ { \prime } b