Solveeit Logo

Question

Question: If the points A(2, 1, -1), B(0, -1, 0), C(4, 0, 4) and D(2, 0, x) are coplanar then x =...

If the points A(2, 1, -1), B(0, -1, 0), C(4, 0, 4) and D(2, 0, x) are coplanar then x =

A

4

B

1

C

2

D

3

Answer

1

Explanation

Solution

To determine the value of x for which the points A(2, 1, -1), B(0, -1, 0), C(4, 0, 4), and D(2, 0, x) are coplanar, we can use the scalar triple product.

  1. Form Vectors: We first find the vectors AB\vec{AB}, AC\vec{AC}, and AD\vec{AD}.

    AB=BA=(02,11,0(1))=(2,2,1)AC=CA=(42,01,4(1))=(2,1,5)AD=DA=(22,01,x(1))=(0,1,x+1)\begin{aligned} \vec{AB} &= B - A = (0-2, -1-1, 0-(-1)) = (-2, -2, 1) \\ \vec{AC} &= C - A = (4-2, 0-1, 4-(-1)) = (2, -1, 5) \\ \vec{AD} &= D - A = (2-2, 0-1, x-(-1)) = (0, -1, x+1) \end{aligned}
  2. Scalar Triple Product: For the points to be coplanar, the scalar triple product AB(AC×AD)\vec{AB} \cdot (\vec{AC} \times \vec{AD}) must be zero.

  3. Compute Cross Product: Compute the cross product AC×AD\vec{AC} \times \vec{AD}.

    AC×AD=ijk21501x+1=i[(1)(x+1)5(1)]j[2(x+1)5(0)]+k[2(1)(1)(0)]\vec{AC} \times \vec{AD} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -1 & 5 \\ 0 & -1 & x+1 \\ \end{vmatrix} = \mathbf{i}[(-1)(x+1)-5(-1)] - \mathbf{j}[2(x+1)-5(0)] + \mathbf{k}[2(-1)-(-1)(0)] =i[(x+1)+5]j[2x+2]+k[2]=i(4x)j(2x+2)2k= \mathbf{i}[-(x+1)+5] - \mathbf{j}[2x+2] + \mathbf{k}[-2] = \mathbf{i}(4-x) - \mathbf{j}(2x+2) - 2\mathbf{k}
  4. Compute Scalar Triple Product: Compute the scalar triple product AB(AC×AD)\vec{AB} \cdot (\vec{AC} \times \vec{AD}).

    AB(AC×AD)=(2)(4x)+(2)[(2x+2)]+(1)(2)\vec{AB} \cdot (\vec{AC} \times \vec{AD}) = (-2)(4-x) + (-2)[-(2x+2)] + (1)(-2) =8+2x+4x+42=6x6= -8 + 2x + 4x + 4 - 2 = 6x - 6
  5. Solve for x: Set the scalar triple product equal to zero and solve for xx.

    6x6=0    6x=6    x=16x - 6 = 0 \implies 6x = 6 \implies x = 1

Thus, the value of xx is 1.