Question
Question: If the points A(2, 1, -1), B(0, -1, 0), C(4, 0, 4) and D(2, 0, x) are coplanar then x =...
If the points A(2, 1, -1), B(0, -1, 0), C(4, 0, 4) and D(2, 0, x) are coplanar then x =

A
4
B
1
C
2
D
3
Answer
1
Explanation
Solution
To determine the value of x for which the points A(2, 1, -1), B(0, -1, 0), C(4, 0, 4), and D(2, 0, x) are coplanar, we can use the scalar triple product.
-
Form Vectors: We first find the vectors AB, AC, and AD.
ABACAD=B−A=(0−2,−1−1,0−(−1))=(−2,−2,1)=C−A=(4−2,0−1,4−(−1))=(2,−1,5)=D−A=(2−2,0−1,x−(−1))=(0,−1,x+1) -
Scalar Triple Product: For the points to be coplanar, the scalar triple product AB⋅(AC×AD) must be zero.
-
Compute Cross Product: Compute the cross product AC×AD.
AC×AD=i20j−1−1k5x+1=i[(−1)(x+1)−5(−1)]−j[2(x+1)−5(0)]+k[2(−1)−(−1)(0)] =i[−(x+1)+5]−j[2x+2]+k[−2]=i(4−x)−j(2x+2)−2k -
Compute Scalar Triple Product: Compute the scalar triple product AB⋅(AC×AD).
AB⋅(AC×AD)=(−2)(4−x)+(−2)[−(2x+2)]+(1)(−2) =−8+2x+4x+4−2=6x−6 -
Solve for x: Set the scalar triple product equal to zero and solve for x.
6x−6=0⟹6x=6⟹x=1
Thus, the value of x is 1.