Question
Mathematics Question on Determinants
If the points (2a,a),(a,2a) and (a,a) form a triangle of area 32 sq units, then the centroid of the triangle is
A
(32,32)
B
(−32,−32)
C
(3,3)
D
(332,332)
Answer
(332,332)
Explanation
Solution
∵ Area of triangle,
=21x1 x2 x3 y1y2y3111
∴ 32=212a a a a2aa111
⇒ 64=a22 1 1 121111
⇒ 64=a2∣2(2−1)−1(1−1)+1(1−2)∣
⇒ 64=a2∣2−0−1∣=a2
⇒ a=±8
∴ The given points becomes.
(±16,±8),(±8,±16)
and (±8,±8) .
∴ Centroid =[±3(16+8+8),±3(8+16+8)]
=(±332,±332)