Solveeit Logo

Question

Mathematics Question on Determinants

If the points (2a,a),(a,2a)(2a,\,a),\,(a,\,2a) and (a,a)(a,\,\,a) form a triangle of area 32 sq32\text{ }sq units, then the centroid of the triangle is

A

(32,32)(32,\,\,32)

B

(32,32)(-32,\,\,-32)

C

(3,3)(3,\,3)

D

(323,323)\left( \frac{32}{3},\,\frac{32}{3} \right)

Answer

(323,323)\left( \frac{32}{3},\,\frac{32}{3} \right)

Explanation

Solution

\because Area of triangle,
=12x1y11 x2y21 x3y31 =\frac{1}{2}\left\| \begin{matrix} {{x}_{1}} & {{y}_{1}} & 1 \\\ {{x}_{2}} & {{y}_{2}} & 1 \\\ {{x}_{3}} & {{y}_{3}} & 1 \\\ \end{matrix} \right\|
\therefore 32=122aa1 a2a1 aa1 32=\frac{1}{2}\left\| \begin{matrix} 2a & a & 1 \\\ a & 2a & 1 \\\ a & a & 1 \\\ \end{matrix} \right\|
\Rightarrow 64=a2211 121 111 64={{a}^{2}}\left\| \begin{matrix} 2 & 1 & 1 \\\ 1 & 2 & 1 \\\ 1 & 1 & 1 \\\ \end{matrix} \right\|
\Rightarrow 64=a22(21)1(11)+1(12)64={{a}^{2}}|2(2-1)-1(1-1)+1(1-2)|
\Rightarrow 64=a2201=a264={{a}^{2}}|2-0-1|={{a}^{2}}
\Rightarrow a=±8a=\pm 8
\therefore The given points becomes.
(±16,±8),(±8,±16)(\pm \,\,16,\,\pm 8),\,(\pm \,\,8,\,\,\pm 16)
and (±8,±8)(\pm \,\,8,\,\,\pm 8) .
\therefore Centroid =[±(16+8+8)3,±(8+16+8)3]=\left[ \pm \frac{(16+8+8)}{3},\pm \frac{(8+16+8)}{3} \right]
=(±323,±323)=\left( \pm \frac{32}{3},\pm \frac{32}{3} \right)