Question
Question: If the points \[(-1,-1,2),(2,m,5)\,and\,(3,11,6)\] are collinear, then find the value of m. (A). 6...
If the points (−1,−1,2),(2,m,5)and(3,11,6) are collinear, then find the value of m.
(A). 6
(B). 8
(C). 10
(D). 12
Solution
Hint: Assume three points P, Q, and R whose coordinates are (−1,−1,2),(2,m,5)and(3,11,6) respectively. Express the coordinates of the points P, Q, and R in the vector form as P=−1i ^−1j ^+2k ^ , Q=2i ^+mj ^+5k ^ , and R=3i ^+11j ^+6k ^ . If the points P, Q, and R is collinear then,PQ=λQR where PQ=P−Q and QR=Q−R . Now compare LHS and RHS and solve it further.
Complete step-by-step solution -
Assume three points P, Q, and R whose coordinates are (−1,−1,2),(2,m,5)and(3,11,6) respectively.
If three points are collinear then all the three points lie on the same line.
Express the coordinates of the points P, Q, and R in the vector form.
Converting the coordinates of the points P, Q, and R in the vector form, we get
P=−1i ^−1j ^+2k ^ ……………….(1)
Q=2i ^+mj ^+5k ^ ……………….(2)
R=3i ^+11j ^+6k ^ ……………….(3)
If the points P, Q, and R is collinear then,
PQ=λQR …………….(4)
Now, the value of the PQ is,
PQ=P−Q ……………..(5)
Putting the value of P and Q from equation (1) and equation (2) in equation (5), we get
PQ=(−1i ^−1j ^+2k ^)−(2i ^+mj ^+5k ^)
⇒PQ=−3i ^−(m+1)j ^−3k ^ ……………………(6)
Now, the value of the QR is,
QR=Q−R ……………..(7)
Putting the value of Q and R from equation (2) and equation (3) in equation (7), we get
QR=2i ^+mj ^+5k ^−3i ^−11j ^−6k ^
⇒QR=−1i ^+(m−11)j ^−1k ^ ………………………(8)
From equation (4), we have PQ=λQR .
Now, putting the value of PQ and QR from equation (6) and equation (8) in equation (4), we get
PQ=λQR
⇒−3i ^−(m+1)j ^−3k ^=λ−1i ^+(m−11)j ^−1k ^
On comparing LHS and RHS of the above equation, we get
−3=−λ ……………………..(9)
−(m+1)=λ(m−11) ………………….(10)
Solving equation (1), we get
−3=−λ
⇒3=λ …………………(11)
Now, putting the value of λ in equation (10), we get
−(m+1)=λ(m−11)