Solveeit Logo

Question

Question: If the points \[(-1,-1,2),(2,m,5)\,and\,(3,11,6)\] are collinear, then find the value of m. (A). 6...

If the points (1,1,2),(2,m,5)and(3,11,6)(-1,-1,2),(2,m,5)\,and\,(3,11,6) are collinear, then find the value of m.
(A). 6
(B). 8
(C). 10
(D). 12

Explanation

Solution

Hint: Assume three points P, Q, and R whose coordinates are (1,1,2),(2,m,5)and(3,11,6)(-1,-1,2),(2,m,5)\,and\,(3,11,6) respectively. Express the coordinates of the points P, Q, and R in the vector form as P=1i ^1j ^+2k ^\overrightarrow{P}=-1\overset{\hat{\ }}{\mathop{i}}\,-1\overset{\hat{\ }}{\mathop{j}}\,+2\overset{\hat{\ }}{\mathop{k}}\, , Q=2i ^+mj ^+5k ^\overrightarrow{Q}=2\overset{\hat{\ }}{\mathop{i}}\,+m\overset{\hat{\ }}{\mathop{j}}\,+5\overset{\hat{\ }}{\mathop{k}}\, , and R=3i ^+11j ^+6k ^\overrightarrow{R}=3\overset{\hat{\ }}{\mathop{i}}\,+11\overset{\hat{\ }}{\mathop{j}}\,+6\overset{\hat{\ }}{\mathop{k}}\, . If the points P, Q, and R is collinear then,PQ=λQR\overrightarrow{PQ}=\lambda \overrightarrow{QR} where PQ=PQ\overrightarrow{PQ}=\overrightarrow{P}-\overrightarrow{Q} and QR=QR\overrightarrow{QR}=\overrightarrow{Q}-\overrightarrow{R} . Now compare LHS and RHS and solve it further.

Complete step-by-step solution -
Assume three points P, Q, and R whose coordinates are (1,1,2),(2,m,5)and(3,11,6)(-1,-1,2),(2,m,5)\,and\,(3,11,6) respectively.
If three points are collinear then all the three points lie on the same line.

Express the coordinates of the points P, Q, and R in the vector form.
Converting the coordinates of the points P, Q, and R in the vector form, we get
P=1i ^1j ^+2k ^\overrightarrow{P}=-1\overset{\hat{\ }}{\mathop{i}}\,-1\overset{\hat{\ }}{\mathop{j}}\,+2\overset{\hat{\ }}{\mathop{k}}\, ……………….(1)
Q=2i ^+mj ^+5k ^\overrightarrow{Q}=2\overset{\hat{\ }}{\mathop{i}}\,+m\overset{\hat{\ }}{\mathop{j}}\,+5\overset{\hat{\ }}{\mathop{k}}\, ……………….(2)
R=3i ^+11j ^+6k ^\overrightarrow{R}=3\overset{\hat{\ }}{\mathop{i}}\,+11\overset{\hat{\ }}{\mathop{j}}\,+6\overset{\hat{\ }}{\mathop{k}}\, ……………….(3)
If the points P, Q, and R is collinear then,
PQ=λQR\overrightarrow{PQ}=\lambda \overrightarrow{QR} …………….(4)
Now, the value of the PQ\overrightarrow{PQ} is,
PQ=PQ\overrightarrow{PQ}=\overrightarrow{P}-\overrightarrow{Q} ……………..(5)
Putting the value of P\overrightarrow{P} and Q\overrightarrow{Q} from equation (1) and equation (2) in equation (5), we get
PQ=(1i ^1j ^+2k ^)(2i ^+mj ^+5k ^)\overrightarrow{PQ}=(-1\overset{\hat{\ }}{\mathop{i}}\,-1\overset{\hat{\ }}{\mathop{j}}\,+2\overset{\hat{\ }}{\mathop{k}}\,)-(2\overset{\hat{\ }}{\mathop{i}}\,+m\overset{\hat{\ }}{\mathop{j}}\,+5\overset{\hat{\ }}{\mathop{k}}\,)
PQ=3i ^(m+1)j ^3k ^\Rightarrow \overrightarrow{PQ}=-3\overset{\hat{\ }}{\mathop{i}}\,-(m+1)\overset{\hat{\ }}{\mathop{j}}\,-3\overset{\hat{\ }}{\mathop{k}}\, ……………………(6)
Now, the value of the QR\overrightarrow{QR} is,
QR=QR\overrightarrow{QR}=\overrightarrow{Q}-\overrightarrow{R} ……………..(7)
Putting the value of Q\overrightarrow{Q} and R\overrightarrow{R} from equation (2) and equation (3) in equation (7), we get
QR=2i ^+mj ^+5k ^3i ^11j ^6k ^\overrightarrow{QR}=2\overset{\hat{\ }}{\mathop{i}}\,+m\overset{\hat{\ }}{\mathop{j}}\,+5\overset{\hat{\ }}{\mathop{k}}\,-3\overset{\hat{\ }}{\mathop{i}}\,-11\overset{\hat{\ }}{\mathop{j}}\,-6\overset{\hat{\ }}{\mathop{k}}\,
QR=1i ^+(m11)j ^1k ^\Rightarrow \overrightarrow{QR}=-1\overset{\hat{\ }}{\mathop{i}}\,+(m-11)\overset{\hat{\ }}{\mathop{j}}\,-1\overset{\hat{\ }}{\mathop{k}}\, ………………………(8)
From equation (4), we have PQ=λQR\overrightarrow{PQ}=\lambda \overrightarrow{QR} .
Now, putting the value of PQ\overrightarrow{PQ} and QR\overrightarrow{QR} from equation (6) and equation (8) in equation (4), we get
PQ=λQR\overrightarrow{PQ}=\lambda \overrightarrow{QR}
3i ^(m+1)j ^3k ^=λ1i ^+(m11)j ^1k ^\Rightarrow -3\overset{\hat{\ }}{\mathop{i}}\,-(m+1)\overset{\hat{\ }}{\mathop{j}}\,-3\overset{\hat{\ }}{\mathop{k}}\,=\lambda \\{-1\overset{\hat{\ }}{\mathop{i}}\,+(m-11)\overset{\hat{\ }}{\mathop{j}}\,-1\overset{\hat{\ }}{\mathop{k}}\,\\}
On comparing LHS and RHS of the above equation, we get
3=λ-3=-\lambda ……………………..(9)
(m+1)=λ(m11)-(m+1)=\lambda (m-11) ………………….(10)
Solving equation (1), we get
3=λ-3=-\lambda
3=λ\Rightarrow 3=\lambda …………………(11)
Now, putting the value of λ\lambda in equation (10), we get
(m+1)=λ(m11)-(m+1)=\lambda (m-11)

& -(m+1)=3(m-11) \\\ & \Rightarrow -m-1=3m-33 \\\ & \Rightarrow 33-1=3m+m \\\ & \Rightarrow 32=4m \\\ & \Rightarrow 8=m \\\ \end{aligned}$$ So, the value of m is 8. Hence, the correct option is (B). Note: We can also solve this question using another method. If the points $$\overrightarrow{P}=-1\overset{\hat{\ }}{\mathop{i}}\,-1\overset{\hat{\ }}{\mathop{j}}\,+2\overset{\hat{\ }}{\mathop{k}}\,$$ , $$\overrightarrow{Q}=2\overset{\hat{\ }}{\mathop{i}}\,+m\overset{\hat{\ }}{\mathop{j}}\,+5\overset{\hat{\ }}{\mathop{k}}\,$$ and $$\overrightarrow{R}=3\overset{\hat{\ }}{\mathop{i}}\,+11\overset{\hat{\ }}{\mathop{j}}\,+6\overset{\hat{\ }}{\mathop{k}}\,$$ are collinear then $$\overrightarrow{PQ}=-3\overset{\hat{\ }}{\mathop{i}}\,-(m+1)\overset{\hat{\ }}{\mathop{j}}\,-3\overset{\hat{\ }}{\mathop{k}}\,$$ must be parallel to $$\overrightarrow{QR}=-1\overset{\hat{\ }}{\mathop{i}}\,+(m-11)\overset{\hat{\ }}{\mathop{j}}\,-1\overset{\hat{\ }}{\mathop{k}}\,$$ . Hence, the ratios of corresponding direction ratios of parallel $$\overrightarrow{PQ}=-3\overset{\hat{\ }}{\mathop{i}}\,-(m+1)\overset{\hat{\ }}{\mathop{j}}\,-3\overset{\hat{\ }}{\mathop{k}}\,$$ and $$\overrightarrow{QR}=-1\overset{\hat{\ }}{\mathop{i}}\,+(m-11)\overset{\hat{\ }}{\mathop{j}}\,-1\overset{\hat{\ }}{\mathop{k}}\,$$ must be equal. So, $$\dfrac{-3}{-1}=\dfrac{-(m+1)}{(m-11)}=\dfrac{-3}{-1}$$ . Now, $$\begin{aligned} & \dfrac{-3}{-1}=\dfrac{-(m+1)}{(m-11)} \\\ & \Rightarrow -3\left( m-11 \right)=\left( m+1 \right) \\\ & \Rightarrow -3m+33=m+1 \\\ & \Rightarrow 33-1=3m+m \\\ & \Rightarrow 32=4m \\\ & \Rightarrow 8=m \\\ \end{aligned}$$ So, the value of m is 8. Hence, the correct option is (B).