Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

If the points (1, 0, 0), (0, 3, 0) and (0, 0, 2) lie on a plane, then the unit normal vector n^\hat n to the plane is

A

114(i^+3j^+2k^)\frac{1}{\sqrt{14}}(\hat{i}+3\hat{j}+2\hat{k})

B

17(2i^+3j^+6k^)\frac{1}{7}(2\hat{i}+3\hat{j}+6\hat{k})

C

114(2i^+3j^+k^)\frac{1}{\sqrt{14}}(2\hat{i}+3\hat{j}+\hat{k})

D

17(3i^+2j^+6k^)\frac{1}{7}(3\hat{i}+2\hat{j}+6\hat{k})

E

17(6i^+2j^+3k^)\frac{1}{7}(6\hat{i}+2\hat{j}+3\hat{k})

Answer

17(6i^+2j^+3k^)\frac{1}{7}(6\hat{i}+2\hat{j}+3\hat{k})

Explanation

Solution

The correct option is (E) : 17(6i^+2j^+3k^)\frac{1}{7}(6\hat{i}+2\hat{j}+3\hat{k})