Solveeit Logo

Question

Question: If the points (0, 0), (2, 2\(\sqrt{3}\)) and (a, b) be the vertices of an equilateral triangle, then...

If the points (0, 0), (2, 23\sqrt{3}) and (a, b) be the vertices of an equilateral triangle, then (a, b) =

A

(0, – 4)

B

(0, 4)

C

(4, 0)

D

(– 4, 0)

Answer

(4, 0)

Explanation

Solution

Third vertex

(x1+x2±3(y2y1)2,y1+y23(x2x1)2)\left( \frac{x_{1} + x_{2} \pm \sqrt{3}(y_{2}–y_{1})}{2},\frac{y_{1} + y_{2} \mp \sqrt{3}(x_{2}–x_{1})}{2} \right)

=(0+2±3(230)2,0+233(20)2)\left( \frac{0 + 2 \pm \sqrt{3}(2\sqrt{3}–0)}{2},\frac{0 + 2\sqrt{3} \mp \sqrt{3}(2–0)}{2} \right)

= (2±62,23232)\left( \frac{2 \pm 6}{2},\frac{2\sqrt{3} \mp 2\sqrt{3}}{2} \right)

= (2+62,23232)\left( \frac{2 + 6}{2},\frac{2\sqrt{3}–2\sqrt{3}}{2} \right) or (262,23+232)\left( \frac{2–6}{2},\frac{2\sqrt{3} + 2\sqrt{3}}{2} \right)

= (4, 0) or (–2, 23\sqrt{3})