Solveeit Logo

Question

Question: If the point on \[\,\,y=x\tan (\alpha )-\left( \dfrac{a{{x}^{2}}}{2{{u}^{2}}{{\cos }^{2}}(\alpha )} ...

If the point on y=xtan(α)(ax22u2cos2(α)),(a>0)\,\,y=x\tan (\alpha )-\left( \dfrac{a{{x}^{2}}}{2{{u}^{2}}{{\cos }^{2}}(\alpha )} \right)\,,\,(a > 0) where the tangent is parallel to y=x\,y=x has an ordinate u24a\,\,\dfrac{{{u}^{2}}}{4a} then α\,\alpha is equal to:
A. π6\dfrac{\pi }{6}
B. π4\dfrac{\pi }{4}
C. π3\dfrac{\pi }{3}
D. π2\dfrac{\pi }{2}

Explanation

Solution

Here, in the question y=xtan(α)(ax22u2cos2(α))\,\,y=x\tan (\alpha )-\left( \dfrac{a{{x}^{2}}}{2{{u}^{2}}{{\cos }^{2}}(\alpha )} \right) is given and also given that tangent is parallel to y=x\,y=x that means dydx=1\dfrac{dy}{dx}=1 . We have to take the derivative of the above equation and equate the value of x\,\,x with ordinate which is given in the question that is u24a\,\,\dfrac{{{u}^{2}}}{4a}\, .

Complete step by step answer:
According to the given equation:
y=xtan(α)(ax22u2cos2(α))(1)\,\,y=x\tan (\alpha )-\left( \dfrac{a{{x}^{2}}}{2{{u}^{2}}{{\cos }^{2}}(\alpha )} \right)\,---(1)
According to the given condition that is tangent which is parallel to y=x\,y=x , dydx=1(2)\dfrac{dy}{dx}=1----(2)
Taking derivative on both sides on equation (1)(1)
dydx=tan(α)(2ax2u2cos2(α))\dfrac{dy}{dx}=\tan (\alpha )-\left( \dfrac{2ax}{2{{u}^{2}}{{\cos }^{2}}(\alpha )} \right)\,
2 get cancelled after further simplifying we get:
dydx=tan(α)(axu2cos2(α))(3)\dfrac{dy}{dx}=\tan (\alpha )-\left( \dfrac{ax}{{{u}^{2}}{{\cos }^{2}}(\alpha )} \right)\,----(3)
By using the trigonometry property, tan(α)=sin(α)cos(α)(4)\therefore \tan (\alpha )=\dfrac{\sin (\alpha )}{\cos (\alpha )}---(4)
By substituting the value of equation (4)(4) in equation (3)(3) , we get:
dydx=sin(α)cos(α)(axu2cos2(α))(5)\dfrac{dy}{dx}=\dfrac{\sin (\alpha )}{\cos (\alpha )}-\left( \dfrac{ax}{{{u}^{2}}{{\cos }^{2}}(\alpha )} \right)\,---(5)
By substituting the value of equation (2)(2) in equation (5)(5) we get:
1=sin(α)cos(α)(axu2cos2(α))(6)1=\dfrac{\sin (\alpha )}{\cos (\alpha )}-\left( \dfrac{ax}{{{u}^{2}}{{\cos }^{2}}(\alpha )} \right)\,---(6)
Multiply cos2(α){{\cos }^{2}}(\alpha ) on both side on equation (6)(6)
cos2(α)=sin(α)cos(α)×cos2(α)(axu2){{\cos }^{2}}(\alpha )=\dfrac{\sin (\alpha )}{\cos (\alpha )}\times {{\cos }^{2}}(\alpha )-\left( \dfrac{ax}{{{u}^{2}}} \right)
After further simplifying we get:
cos2(α)=sin(α)cos(α)(axu2){{\cos }^{2}}(\alpha )=\sin (\alpha )\cos (\alpha )-\left( \dfrac{ax}{{{u}^{2}}} \right)\,
Take sin(α)cos(α)\sin (\alpha )\cos (\alpha ) on left side and further simplifying we get:
(axu2)=sin(α)cos(α)cos2(α)\left( \dfrac{ax}{{{u}^{2}}} \right)\,=\sin (\alpha )\cos (\alpha )-{{\cos }^{2}}(\alpha )
In the above equation we have to find the value x by further simplifying we get:
x=u2a×(sin(α)cos(α)cos2(α))(7)x=\dfrac{{{u}^{2}}}{a}\times (\sin (\alpha )\cos (\alpha )-{{\cos }^{2}}(\alpha ))---(7)
By taking cos2(α){{\cos }^{2}}(\alpha ) common on equation (7)(7) we get:
x=u2a×(sin(α)cos(α))×cos(α)(8)x=\dfrac{{{u}^{2}}}{a}\times (\sin (\alpha )-\cos (\alpha ))\times \cos (\alpha )---(8)
By substituting the value of equation (8)(8) in equation (1)(1)
y=(u2a×(sin(α)cos(α))×cos(α))tan(α)(a2u2cos2(α))(u2a×(sin(α)cos(α))×cos(α))2(9)y=\left( \dfrac{{{u}^{2}}}{a}\times (\sin (\alpha )-\cos (\alpha ))\times \cos (\alpha ) \right)\tan (\alpha )-\left( \dfrac{a}{2{{u}^{2}}{{\cos }^{2}}(\alpha )} \right)\,{{\left( \dfrac{{{u}^{2}}}{a}\times (\sin (\alpha )-\cos (\alpha ))\times \cos (\alpha ) \right)}^{2}}---(9)
By substituting the equation (4)(4) in equation (9)(9)
y=(u2a×(sin(α)cos(α))×cos(α))×(sin(α)cos(α))(a2u2cos2(α))(u2a×(sin(α)cos(α))×cos(α))2y=\left( \dfrac{{{u}^{2}}}{a}\times (\sin (\alpha )-\cos (\alpha ))\times \cos (\alpha ) \right)\times \left( \dfrac{\sin (\alpha )}{\cos (\alpha )} \right)-\left( \dfrac{a}{2{{u}^{2}}{{\cos }^{2}}(\alpha )} \right)\,{{\left( \dfrac{{{u}^{2}}}{a}\times (\sin (\alpha )-\cos (\alpha ))\times \cos (\alpha ) \right)}^{2}}
By simplifying further we get:
y=(u2a×(sin(α)cos(α))×sin(α))(a2u2cos2(α))(u4a2×(sin(α)cos(α))2×cos2(α))(10)y=\left( \dfrac{{{u}^{2}}}{a}\times (\sin (\alpha )-\cos (\alpha ))\times \sin (\alpha ) \right)-\left( \dfrac{a}{2{{u}^{2}}{{\cos }^{2}}(\alpha )} \right)\,\left( \dfrac{{{u}^{4}}}{{{a}^{2}}}\times {{(\sin (\alpha )-\cos (\alpha ))}^{2}}\times {{\cos }^{2}}(\alpha ) \right)---(10)
By using the property of (ab)2=a22ab+b2{{(a-b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}
(sin(α)cos(α))2=sin2(α)2sin(α)cos(α)+cos2(α)(11){{(\sin (\alpha )-\cos (\alpha ))}^{2}}={{\sin }^{2}}(\alpha )-2\sin (\alpha )\cos (\alpha )+{{\cos }^{2}}(\alpha )--(11)
By substituting the equation (11)(11) in equation (10)(10) and further simplifying we get:
y=(u2a×(sin2(α)cos(α)sin(α)))(a2u2cos2(α))(u4a2×(sin2(α)2sin(α)cos(α)+cos2(α))×cos2(α))y=\left( \dfrac{{{u}^{2}}}{a}\times ({{\sin }^{2}}(\alpha )-\cos (\alpha )\sin (\alpha )) \right)-\left( \dfrac{a}{2{{u}^{2}}{{\cos }^{2}}(\alpha )} \right)\,\left( \dfrac{{{u}^{4}}}{{{a}^{2}}}\times ({{\sin }^{2}}(\alpha )-2\sin (\alpha )\cos (\alpha )+{{\cos }^{2}}(\alpha ))\times {{\cos }^{2}}(\alpha ) \right)
Further simplifying we get:
y=(u2a×(sin2(α)cos(α)sin(α)))(12)(u2a×(sin2(α)2sin(α)cos(α)+cos2(α)))y=\left( \dfrac{{{u}^{2}}}{a}\times ({{\sin }^{2}}(\alpha )-\cos (\alpha )\sin (\alpha )) \right)-\left( \dfrac{1}{2} \right)\,\left( \dfrac{{{u}^{2}}}{a}\times ({{\sin }^{2}}(\alpha )-2\sin (\alpha )\cos (\alpha )+{{\cos }^{2}}(\alpha )) \right)
By using trigonometry identity property, sin2(α)+cos2(α)=1{{\sin }^{2}}(\alpha )+{{\cos }^{2}}(\alpha )=1
and also taking u2a\dfrac{{{u}^{2}}}{a} common on this above equation we get:
y=u2a×((sin2(α)cos(α)sin(α))(12)(12sin(α)cos(α)))y=\dfrac{{{u}^{2}}}{a}\times \left( ({{\sin }^{2}}(\alpha )-\cos (\alpha )\sin (\alpha ))-\left( \dfrac{1}{2} \right)\,\left( 1-2\sin (\alpha )\cos (\alpha ) \right) \right)
By further simplifying we get:
y=u2a×(sin2(α)12)(12)y=\dfrac{{{u}^{2}}}{a}\times \left( {{\sin }^{2}}(\alpha )-\dfrac{1}{2} \right)--(12)
Ordinate is given in question that is y=u24a(13)\,y=\dfrac{{{u}^{2}}}{4a}\,\,----(13)\,\,
Substitute the value of equation (13)(13)\, in equation (12)(12)
u24a=u2a×(sin2(α)12)\dfrac{{{u}^{2}}}{4a}\,=\dfrac{{{u}^{2}}}{a}\times \left( {{\sin }^{2}}(\alpha )-\dfrac{1}{2} \right)
u2a\dfrac{{{u}^{2}}}{a} Get cancelled on both sides
After simplification we get:
14=sin2(α)12\dfrac{1}{4}\,={{\sin }^{2}}(\alpha )-\dfrac{1}{2}
sin(α)=32\sin (\alpha )=\dfrac{\sqrt{3}}{2}
After take sin(α)\sin (\alpha ) on right hand side it becomes sin1(α)\,{{\sin }^{-1}}(\alpha ) we get the value of α\alpha
α=π3\alpha =\,\dfrac{\pi }{3}

So, the correct answer is “Option C”.

Note: Remember that according to the conditions the tangent is parallel to y=x\,y=\,\,\,x that means its derivative should be one. The equation which is given in question in that value of a>0\,a>0 . So the above solution which is given can be referred for similar types of problems.