Solveeit Logo

Question

Question: If the point of intersection of the ellipses \(\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}}\) = 1 and \...

If the point of intersection of the ellipses x2a2+y2b2\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 and x2α2+y2β2\frac{x^{2}}{\alpha^{2}} + \frac{y^{2}}{\beta^{2}} = 1 be at the extremities of the conjugate diameters of the former, then-

A

a2α2+b2β2=2\frac{a^{2}}{\alpha^{2}} + \frac{b^{2}}{\beta^{2}} = 2

B

a2α2b2β2=2\frac{a^{2}}{\alpha^{2}}–\frac{b^{2}}{\beta^{2}} = 2

C

a2α2+b2β2=0\frac{a^{2}}{\alpha^{2}} + \frac{b^{2}}{\beta^{2}} = 0

D

a2α2b2β2=0\frac{a^{2}}{\alpha^{2}}–\frac{b^{2}}{\beta^{2}} = 0

Answer

a2α2+b2β2=2\frac{a^{2}}{\alpha^{2}} + \frac{b^{2}}{\beta^{2}} = 2

Explanation

Solution

The points of intersection of the ellipses x2a2+y2b2\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 and x2α2+y2β2\frac{x^{2}}{\alpha^{2}} + \frac{y^{2}}{\beta^{2}}= 1 are given by

x2 (1α21a2)\left( \frac{1}{\alpha^{2}} - \frac{1}{a^{2}} \right) + y2 (1β21b2)\left( \frac{1}{\beta^{2}} - \frac{1}{b^{2}} \right) = 0.

This equation represents a pair of straight lines passing through the origin.

Obviously here, they correspond to the diameters PCP¢ and DCD¢.

Let y = mx be one of the lines. Then y must satisfy the equation

(1α21a2)\left( \frac{1}{\alpha^{2}} - \frac{1}{a^{2}} \right) + m2(1β21b2)\left( \frac{1}{\beta^{2}} - \frac{1}{b^{2}} \right) = 0.

This is a quadratic equation in ‘m’ and hence it will have two roots, say m1 and m2.

\ m1m2 = (1α21a2)\left( \frac{1}{\alpha^{2}} - \frac{1}{a^{2}} \right) ø(1b21β2)\left( \frac{1}{b^{2}} - \frac{1}{\beta^{2}} \right).

If the lines PCP¢ and DCD¢ are conjugate diameters, then we must have1α21a21β21b2\frac{\frac{1}{\alpha^{2}} - \frac{1}{a^{2}}}{\frac{1}{\beta^{2}} - \frac{1}{b^{2}}}= – b2a2\frac{b^{2}}{a^{2}}

Ž a2α2\frac{a^{2}}{\alpha^{2}} – 1 = –(b2β21)\left( \frac{b^{2}}{\beta^{2}} - 1 \right) = 1 – b2β2\frac{b^{2}}{\beta^{2}}

\ a2α2\frac{a^{2}}{\alpha^{2}}+b2β2\frac{b^{2}}{\beta^{2}} = 2.

Hence (1) is the correct answer.