Solveeit Logo

Question

Question: If the point \(\left( \frac { a ^ { 3 } } { a - 1 } , \frac { a ^ { 2 } - 3 } { a - 1 } \right)\), !...

If the point (a3a1,a23a1)\left( \frac { a ^ { 3 } } { a - 1 } , \frac { a ^ { 2 } - 3 } { a - 1 } \right), and

(c3c1,c23c1)\left( \frac { c ^ { 3 } } { c - 1 } , \frac { c ^ { 2 } - 3 } { c - 1 } \right) are collinear for distinct

a, b, c and aabc + b (a + b + c) + g (ab + bc + ca) = 0 then value of a2 + b2 + g2 is-

A

10

B

9

C

4

D

None of these

Answer

None of these

Explanation

Solution

Let the given point on the line lx + my + n = 0 then l (x3x1)\left( \frac { x ^ { 3 } } { x - 1 } \right) + m(x23x1)\left( \frac { x ^ { 2 } - 3 } { x - 1 } \right) + n = 0

Where x = a, b, c are roots of equation.

lx3 + mx2 + nx – 3m – n = 0

Ž a + b + c = m- \frac { m } { \ell } , ab + bc + ca = n\frac { \mathrm { n } } { \ell } abc =

Ž abc – (ab + bc + ca) + 3 (a + b + c)

Ž n\frac { \mathrm { n } } { \ell }3 m\frac { 3 \mathrm {~m} } { \ell } = 0

Ž a = 1, b = 3, g = –1

Then a2 + b2 + g2 = 1 + 9 + 1 = 11.