Question
Question: If the point \(\left( \frac { a ^ { 3 } } { a - 1 } , \frac { a ^ { 2 } - 3 } { a - 1 } \right)\), !...
If the point (a−1a3,a−1a2−3), and
(c−1c3,c−1c2−3) are collinear for distinct
a, b, c and aabc + b (a + b + c) + g (ab + bc + ca) = 0 then value of a2 + b2 + g2 is-
A
10
B
9
C
4
D
None of these
Answer
None of these
Explanation
Solution
Let the given point on the line lx + my + n = 0 then l (x−1x3) + m(x−1x2−3) + n = 0
Where x = a, b, c are roots of equation.
lx3 + mx2 + nx – 3m – n = 0
Ž a + b + c = −ℓm , ab + bc + ca = ℓn abc =
Ž abc – (ab + bc + ca) + 3 (a + b + c)
Ž – ℓn – ℓ3 m = 0
Ž a = 1, b = 3, g = –1
Then a2 + b2 + g2 = 1 + 9 + 1 = 11.