Solveeit Logo

Question

Question: If the point \(\left( {{a}_{1}},{{b}_{1}} \right),\,\left( {{a}_{2}},{{b}_{2}} \right)\,\text{and}\,...

If the point (a1,b1),(a2,b2)and[(a1+a2),(b1+b2)]\left( {{a}_{1}},{{b}_{1}} \right),\,\left( {{a}_{2}},{{b}_{2}} \right)\,\text{and}\,\left[ \left( {{a}_{1}}+{{a}_{2}} \right),\left( {{b}_{1}}+{{b}_{2}} \right) \right] are collinear, then show that a1b2=a2b1{{a}_{1}}{{b}_{2}}={{a}_{2}}{{b}_{1}}.

Explanation

Solution

Hint:In this question, we will use the distance between two points formula of two-dimensional geometry and apply the condition that the sum of distance between two pairs of points is equal to the third pair of points.

Complete step-by-step answer:
Let (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right)be two points in two-dimensional geometry. Then distance, let say dd, between these two points is given by,
d=(x2x1)2+(y2y1)2(i)d=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}\cdots \cdots \left( i \right)
Now, three points lying in a two-dimensional plane are collinear if and only if the sum of distance between two pairs of points is equal to the third pair of points. That is, if three points are A, B and C are collinear, then, AB + BC = AC.

Let, A=(a1,b1),B=(a2,b2)andC=[(a1+a2),(b1+b2)]A=\left( {{a}_{1}},{{b}_{1}} \right),\,B=\,\left( {{a}_{2}},{{b}_{2}} \right)\,\text{and}\,C=\left[ \left( {{a}_{1}}+{{a}_{2}} \right),\left( {{b}_{1}}+{{b}_{2}} \right) \right].
Here, from equation (i)\left( i \right), distance between points AA and BB is given as,
AB=(a2a1)2+(b2b1)2AB=\sqrt{{{\left( {{a}_{2}}-{{a}_{1}} \right)}^{2}}+{{\left( {{b}_{2}}-{{b}_{1}} \right)}^{2}}}
Similarly, distance between points BB and CC is given as,
BC=((a1+a2)a2)2+((b1+b2)b2)2 =(a1+a2a2)2+(b1+b2b2)2 =a12+b12 \begin{aligned} & BC=\sqrt{{{\left( \left( {{a}_{1}}+{{a}_{2}} \right)-{{a}_{2}} \right)}^{2}}+{{\left( \left( {{b}_{1}}+{{b}_{2}} \right)-{{b}_{2}} \right)}^{2}}} \\\ & =\sqrt{{{\left( {{a}_{1}}+{{a}_{2}}-{{a}_{2}} \right)}^{2}}+{{\left( {{b}_{1}}+{{b}_{2}}-{{b}_{2}} \right)}^{2}}} \\\ & =\sqrt{{{a}_{1}}^{2}+{{b}_{1}}^{2}} \\\ \end{aligned}
And, distance between points AA and CC is given as,
AC=((a1+a2)a1)2+((b1+b2)b1)2 =(a1+a2a1)2+(b1+b2b1)2 =a22+b22 \begin{aligned} & AC=\sqrt{{{\left( \left( {{a}_{1}}+{{a}_{2}} \right)-{{a}_{1}} \right)}^{2}}+{{\left( \left( {{b}_{1}}+{{b}_{2}} \right)-{{b}_{1}} \right)}^{2}}} \\\ & =\sqrt{{{\left( {{a}_{1}}+{{a}_{2}}-{{a}_{1}} \right)}^{2}}+{{\left( {{b}_{1}}+{{b}_{2}}-{{b}_{1}} \right)}^{2}}} \\\ & =\sqrt{{{a}_{2}}^{2}+{{b}_{2}}^{2}} \\\ \end{aligned}
Now, since these points are collinear, therefore,
AB+BC=ACAB+BC=AC.
Putting values of AB,BCandACAB,\,BC\,and\,ACfrom above, we get,
(a2a1)2+(b2b1)2+a12+b12=a22+b22\sqrt{{{\left( {{a}_{2}}-{{a}_{1}} \right)}^{2}}+{{\left( {{b}_{2}}-{{b}_{1}} \right)}^{2}}}+\sqrt{{{a}_{1}}^{2}+{{b}_{1}}^{2}}=\sqrt{{{a}_{2}}^{2}+{{b}_{2}}^{2}}
Subtracting, a12+b12\sqrt{{{a}_{1}}^{2}+{{b}_{1}}^{2}} from both sides of the equation, we get,
(a2a1)2+(b2b1)2=a22+b22a12+b12\sqrt{{{\left( {{a}_{2}}-{{a}_{1}} \right)}^{2}}+{{\left( {{b}_{2}}-{{b}_{1}} \right)}^{2}}}=\sqrt{{{a}_{2}}^{2}+{{b}_{2}}^{2}}-\sqrt{{{a}_{1}}^{2}+{{b}_{1}}^{2}}
Squaring both sides of the equation, we get,
[(a2a1)2+(b2b1)2]2=[a22+b22a12+b12]2 (a2a1)2+(b2b1)2=[a22+b22a12+b12]2 \begin{aligned} & {{\left[ \sqrt{{{\left( {{a}_{2}}-{{a}_{1}} \right)}^{2}}+{{\left( {{b}_{2}}-{{b}_{1}} \right)}^{2}}} \right]}^{2}}={{\left[ \sqrt{{{a}_{2}}^{2}+{{b}_{2}}^{2}}-\sqrt{{{a}_{1}}^{2}+{{b}_{1}}^{2}} \right]}^{2}} \\\ & \Rightarrow {{\left( {{a}_{2}}-{{a}_{1}} \right)}^{2}}+{{\left( {{b}_{2}}-{{b}_{1}} \right)}^{2}}={{\left[ \sqrt{{{a}_{2}}^{2}+{{b}_{2}}^{2}}-\sqrt{{{a}_{1}}^{2}+{{b}_{1}}^{2}} \right]}^{2}} \\\ \end{aligned}
Applying, (x+y)=x2+y2+2xy\left( x+y \right)={{x}^{2}}+{{y}^{2}}+2xy formula on both sides of equation, we get,
(a22+a122a1a2)+(b22+b122b1b2)=(a22+b22)2+(a12+b12)22a22+b22a12+b12 a22+a122a1a2+b22+b122b1b2=a22+b22+a12+b122(a22+b22)(a12+b12) \begin{aligned} & \left( {{a}_{2}}^{2}+{{a}_{1}}^{2}-2{{a}_{1}}{{a}_{2}} \right)+\left( {{b}_{2}}^{2}+{{b}_{1}}^{2}-2{{b}_{1}}{{b}_{2}} \right)={{\left( \sqrt{{{a}_{2}}^{2}+{{b}_{2}}^{2}} \right)}^{2}}+{{\left( \sqrt{{{a}_{1}}^{2}+{{b}_{1}}^{2}} \right)}^{2}}-2\sqrt{{{a}_{2}}^{2}+{{b}_{2}}^{2}}\sqrt{{{a}_{1}}^{2}+{{b}_{1}}^{2}} \\\ & \Rightarrow {{a}_{2}}^{2}+{{a}_{1}}^{2}-2{{a}_{1}}{{a}_{2}}+{{b}_{2}}^{2}+{{b}_{1}}^{2}-2{{b}_{1}}{{b}_{2}}={{a}_{2}}^{2}+{{b}_{2}}^{2}+{{a}_{1}}^{2}+{{b}_{1}}^{2}-2\sqrt{\left( {{a}_{2}}^{2}+{{b}_{2}}^{2} \right)\left( {{a}_{1}}^{2}+{{b}_{1}}^{2} \right)} \\\ \end{aligned}
Subtracting a12+a22+b12+b22{{a}_{1}}^{2}+{{a}_{2}}^{2}+{{b}_{1}}^{2}+{{b}_{2}}^{2} from both sides of the equation, we get,
2a1a22b1b2=2(a22+b22)(a12+b12)-2{{a}_{1}}{{a}_{2}}-2{{b}_{1}}{{b}_{2}}=-2\sqrt{\left( {{a}_{2}}^{2}+{{b}_{2}}^{2} \right)\left( {{a}_{1}}^{2}+{{b}_{1}}^{2} \right)}
Dividing 2-2 from both sides of the equation, we get,
a1a2+b1b2=(a22+b22)(a12+b12){{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}=\sqrt{\left( {{a}_{2}}^{2}+{{b}_{2}}^{2} \right)\left( {{a}_{1}}^{2}+{{b}_{1}}^{2} \right)}
Again, squaring both sides of the equation, we get,
(a1a2+b1b2)2=((a22+b22)(a12+b12))2 (a1a2)2+(b1b2)2+2a1a2b1b2=(a22+b22)(a12+b12) \begin{aligned} & {{\left( {{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}} \right)}^{2}}={{\left( \sqrt{\left( {{a}_{2}}^{2}+{{b}_{2}}^{2} \right)\left( {{a}_{1}}^{2}+{{b}_{1}}^{2} \right)} \right)}^{2}} \\\ & \Rightarrow {{\left( {{a}_{1}}{{a}_{2}} \right)}^{2}}+{{\left( {{b}_{1}}{{b}_{2}} \right)}^{2}}+2{{a}_{1}}{{a}_{2}}{{b}_{1}}{{b}_{2}}=\left( {{a}_{2}}^{2}+{{b}_{2}}^{2} \right)\left( {{a}_{1}}^{2}+{{b}_{1}}^{2} \right) \\\ \end{aligned}
Applying, distributive law on right side of the equation, we get,
a12a22+b12b22+2a1a2b1b2=a22a12+a22b12+b22a12+b22b12 a12a22+b12b22+2a1a2b1b2=a12a22+b12b22+b22a12+a22b12 \begin{aligned} & {{a}_{1}}^{2}{{a}_{2}}^{2}+{{b}_{1}}^{2}{{b}_{2}}^{2}+2{{a}_{1}}{{a}_{2}}{{b}_{1}}{{b}_{2}}={{a}_{2}}^{2}{{a}_{1}}^{2}+{{a}_{2}}^{2}{{b}_{1}}^{2}+{{b}_{2}}^{2}{{a}_{1}}^{2}+{{b}_{2}}^{2}{{b}_{1}}^{2} \\\ & \Rightarrow {{a}_{1}}^{2}{{a}_{2}}^{2}+{{b}_{1}}^{2}{{b}_{2}}^{2}+2{{a}_{1}}{{a}_{2}}{{b}_{1}}{{b}_{2}}={{a}_{1}}^{2}{{a}_{2}}^{2}+{{b}_{1}}^{2}{{b}_{2}}^{2}+{{b}_{2}}^{2}{{a}_{1}}^{2}+{{a}_{2}}^{2}{{b}_{1}}^{2} \\\ \end{aligned}
Subtracting a12a22+b12b22{{a}_{1}}^{2}{{a}_{2}}^{2}+{{b}_{1}}^{2}{{b}_{2}}^{2} from both sides of the equation, we have,
2a1a2b1b2=b22a12+a22b122{{a}_{1}}{{a}_{2}}{{b}_{1}}{{b}_{2}}={{b}_{2}}^{2}{{a}_{1}}^{2}+{{a}_{2}}^{2}{{b}_{1}}^{2}
Subtracting 2a1a2b1b22{{a}_{1}}{{a}_{2}}{{b}_{1}}{{b}_{2}} to both sides of the equation, we get,
b22a12+a22b122a1a2b1b2=0 (b2a1)2+(a2b1)22(b2a1)(a2b1)=0 \begin{aligned} & {{b}_{2}}^{2}{{a}_{1}}^{2}+{{a}_{2}}^{2}{{b}_{1}}^{2}-2{{a}_{1}}{{a}_{2}}{{b}_{1}}{{b}_{2}}=0 \\\ & \Rightarrow {{\left( {{b}_{2}}{{a}_{1}} \right)}^{2}}+{{\left( {{a}_{2}}{{b}_{1}} \right)}^{2}}-2\left( {{b}_{2}}{{a}_{1}} \right)\left( {{a}_{2}}{{b}_{1}} \right)=0 \\\ \end{aligned}
Using (x+y)=x2+y2+2xy\left( x+y \right)={{x}^{2}}+{{y}^{2}}+2xy, we can write above equation as,
(b2a1a2b1)2=0{{\left( {{b}_{2}}{{a}_{1}}-{{a}_{2}}{{b}_{1}} \right)}^{2}}=0
Taking root on both sides, we get,
b2a1a2b1=0{{b}_{2}}{{a}_{1}}-{{a}_{2}}{{b}_{1}}=0
Adding a2b1{{a}_{2}}{{b}_{1}} on both sides of the equation, we get,
b2a1=a2b1 a1b2=a2b1 \begin{aligned} & {{b}_{2}}{{a}_{1}}={{a}_{2}}{{b}_{1}} \\\ & \Rightarrow {{a}_{1}}{{b}_{2}}={{a}_{2}}{{b}_{1}} \\\ \end{aligned}
Hence, we shown that, if points (a1,b1),(a2,b2)and[(a1+a2),(b1+b2)]\left( {{a}_{1}},{{b}_{1}} \right),\,\left( {{a}_{2}},{{b}_{2}} \right)\,\text{and}\,\left[ \left( {{a}_{1}}+{{a}_{2}} \right),\left( {{b}_{1}}+{{b}_{2}} \right) \right] are collinear, then a1b2=a2b1{{a}_{1}}{{b}_{2}}={{a}_{2}}{{b}_{1}}.

Note: In this type of questions, if the order of points in which they are arranged is not mentioned, as in this question also, take the order to be the same as in which points are written in the question.