Solveeit Logo

Question

Question: If the point (2a, a) lies inside the parabola x2 – 2x – 4y + 3 = 0, then a lies in the interval-...

If the point (2a, a) lies inside the parabola x2 – 2x – 4y + 3 = 0, then a lies in the interval-

A

[12,32]\left\lbrack \frac{1}{2},\frac{3}{2} \right\rbrack

B

(12,32)\left( \frac{1}{2},\frac{3}{2} \right)

C

(1, 3)

D

(32,12)\left( \frac{–3}{2},\frac{–1}{2} \right)

Answer

(12,32)\left( \frac{1}{2},\frac{3}{2} \right)

Explanation

Solution

The parabola is (x – 1)2 = 4(y12)\left( y–\frac{1}{2} \right)and origin lies outside the parabolic region; (0, 0)

makes x2 – 2x – 4y + 3 positive.

\ (2a, a) should make x2 – 2x – 4y + 3 negative

i.e., 4a2 – 8a + 3 < 0 i.e., (2a – 1) (2a – 3) < 0

\ a belongs to the open interval(12,32)\left( \frac{1}{2},\frac{3}{2} \right)