Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

If the plane 3x+y+2z+6=03x+y+2z+6=0 is parallel to the line 3x12b=3y=z1a,\frac{3x-1}{2b}=3-y=\frac{z-1}{a}, then the value of 3a+3b3a+3b is

A

12\frac{1}{2}

B

32\frac{3}{2}

C

33

D

44

Answer

32\frac{3}{2}

Explanation

Solution

Comparing the given equation of plane 3x+y+2z+6=03x+y+2z+6=0 with lx+my+nz+d=0lx+my+nz+d=0
\Rightarrow l=3,m=1,n=2l=3,m=1,n=2
Also, comparing given equation of line
x132b3=3y=z1a\frac{x-\frac{1}{3}}{\frac{2b}{3}}=3-y=\frac{z-1}{a} with xx1a1=yy1b1=zz1c1,\frac{x-{{x}_{1}}}{{{a}_{1}}}=\frac{y-{{y}_{1}}}{{{b}_{1}}}=\frac{z-{{z}_{1}}}{{{c}_{1}}}, we get a1=2b3,b1=1,c1=a{{a}_{1}}=\frac{2b}{3},{{b}_{1}}=-1,{{c}_{1}}=a
For parallel line la1+mb1+nc1=0l{{a}_{1}}+m{{b}_{1}}+n{{c}_{1}}=0
\Rightarrow 3.2b3+1.(1)+2a=03.\frac{2b}{3}+1.(-1)+2a=0
\Rightarrow 2a+2b=12a+2b=1
\Rightarrow a+b=12a+b=\frac{1}{2}
\Rightarrow 3a+3b=323a+3b=\frac{3}{2}