Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

If the plane 2x3y+6z11=02x-3y+6z-11=0 makes an angle θ\theta with the xaxisx-axis, then the value of tanθ\tan \theta is equal to

A

23\frac{2}{3}

B

215\frac{2}{15}

C

23\frac{\sqrt{2}}{3}

D

2515\frac{2\sqrt{5}}{15}

Answer

2515\frac{2\sqrt{5}}{15}

Explanation

Solution

Let the equation of X-axis be x0a=y00=z00\frac{x-0}{a}=\frac{y-0}{0}=\frac{z-0}{0} Here, a2=a,b1=0{{a}_{2}}=a,\,\,\,{{b}_{1}}=0 and c1=0{{c}_{1}}=0 Given equation of plane is 2x3y+6z11=02x-3y+6z-11=0 Here, a2=2,b2=3,c2=6{{a}_{2}}=2,\,\,{{b}_{2}}=-3,\,{{c}_{2}}=6
Let θ\theta be the angle between line and plane. Then,
sinθ=a1a2+b1b2+c1c2a12+b12+c12a22+b22+c22\sin \theta =\frac{{{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}\,\sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}
=a×2+0×(3)+0×6a2+02+0222+(3)2+62=\frac{a\times 2+0\times (-3)+0\times 6}{\sqrt{{{a}^{2}}+{{0}^{2}}+{{0}^{2}}}\,\sqrt{{{2}^{2}}+{{(-3)}^{2}}+{{6}^{2}}}}
=2aa24+9+36=2aa.7=27=\frac{2a}{\sqrt{{{a}^{2}}}\sqrt{4+9+36}}=\frac{2a}{a.\,7}=\frac{2}{7}
\Rightarrow sinθ=27\sin \,\,\theta =\frac{2}{7}