Solveeit Logo

Question

Question: If the plane \(2ax - 3ay + 4az + 6 = 0\) passes through the midpoint of the line joining the centres...

If the plane 2ax3ay+4az+6=02ax - 3ay + 4az + 6 = 0 passes through the midpoint of the line joining the centres of the spheres

x2+y2+z2+6x8y2z=13x^{2} + y^{2} + z^{2} + 6x - 8y - 2z = 13 and

x2+y2+z210x+4y2z=8x^{2} + y^{2} + z^{2} - 10x + 4y - 2z = 8, then aa equals

A

– 2

B

2

C

– 1

D

1

Answer

– 2

Explanation

Solution

S1x2+y2+z2+6x8y2z=13S _ { 1 } \equiv x ^ { 2 } + y ^ { 2 } + z ^ { 2 } + 6 x - 8 y - 2 z = 13 C1(3,4,1)C _ { 1 } \equiv ( - 3,4,1 )

S2x2+y2+z210x+4y2z=8S _ { 2 } \equiv x ^ { 2 } + y ^ { 2 } + z ^ { 2 } - 10 x + 4 y - 2 z = 8 C2(5,2,1)C _ { 2 } \equiv ( 5 , - 2,1 )

So mid point of C1C2C _ { 1 } C _ { 2 } (say P)

P(532,422,1+12)=P(1,1,1)\equiv P \left( \frac { 5 - 3 } { 2 } , \frac { 4 - 2 } { 2 } , \frac { 1 + 1 } { 2 } \right) = P ( 1,1,1 )

Now the plane 2ax3ay+4az+6=02 a x - 3 a y + 4 a z + 6 = 0 passes through the point P,

So, 2a(1)3a(1)+4a(1)+6=0=2a3a+4a+6=02 a ( 1 ) - 3 a ( 1 ) + 4 a ( 1 ) + 6 = 0 = 2 a - 3 a + 4 a + 6 = 0

3a+6=03 a + 6 = 03a=6a=23 a = - 6 \Rightarrow a = - 2 .