Question
Question: If the plane \(2ax - 3ay + 4az + 6 = 0\) passes through the midpoint of the line joining the centres...
If the plane 2ax−3ay+4az+6=0 passes through the midpoint of the line joining the centres of the spheres
x2+y2+z2+6x−8y−2z=13 and
x2+y2+z2−10x+4y−2z=8, then a equals
A
– 2
B
2
C
– 1
D
1
Answer
– 2
Explanation
Solution
S1≡x2+y2+z2+6x−8y−2z=13 C1≡(−3,4,1)
S2≡x2+y2+z2−10x+4y−2z=8 C2≡(5,−2,1)
So mid point of C1C2 (say P)
≡P(25−3,24−2,21+1)=P(1,1,1)
Now the plane 2ax−3ay+4az+6=0 passes through the point P,
So, 2a(1)−3a(1)+4a(1)+6=0=2a−3a+4a+6=0
⇒ 3a+6=0⇒ 3a=−6⇒a=−2 .