Question
Mathematics Question on x-intercepts and y-intercepts
If the perpendicular bisector of the line segment joining A(α,3) and B(2,−1) has y-intercept 1, then α =
A
0
B
± 1
C
± 2
D
± 3
Answer
± 2
Explanation
Solution
Let the equation of perpendicular bisector is
y=mx+c
Here, c=1
∴y=mx+1…(i)
Mid-point of points A(α,3) and B(2,−1) is
(2α+2,1)
Since, E (i) passes through (2α+2,1).
So, 1=m(2α+2)+1
⇒1=2m(α+2)+1
⇒2=m(α+2)+2
⇒m(α+2)=0
⇒mα+2m=0…(ii)
m= gradient of the perpendicular line
m=−( gradient of A B)=-\left\\{\frac{\alpha-2}{4}\right\\}=\left(\frac{2-\alpha}{4}\right)
Put value of m in E (ii), we get
α(42−α)+2(42−α)=0
42α−α2+44−2α=0
⇒−α2+4=0
⇒α2=4
⇒α=±2