Solveeit Logo

Question

Mathematics Question on x-intercepts and y-intercepts

If the perpendicular bisector of the line segment joining A(α,3)A(\alpha, 3) and B(2,1)B (2, -1) has yy-intercept 11, then α\alpha =

A

0

B

±\pm 1

C

±\pm 2

D

±\pm 3

Answer

±\pm 2

Explanation

Solution

Let the equation of perpendicular bisector is
y=mx+cy=m x+c
Here, c=1c=1
y=mx+1\therefore y=m x+1 \dots(i)
Mid-point of points A(α,3)A(\alpha, 3) and B(2,1)B(2,-1) is
(α+22,1)\left(\frac{\alpha+2}{2}, 1\right)
Since, E (i) passes through (α+22,1)\left(\frac{\alpha+2}{2}, 1\right).
So, 1=m(α+22)+1 1=m\left(\frac{\alpha+2}{2}\right)+1
1=m(α+2)2+1\Rightarrow 1=\frac{m(\alpha+2)}{2}+1
2=m(α+2)+2\Rightarrow 2=m(\alpha+2)+2
m(α+2)=0\Rightarrow m(\alpha+2)=0
mα+2m=0\Rightarrow m \alpha+2 m=0 \dots(ii)
m=m= gradient of the perpendicular line
m=(m=-( gradient of A B)=-\left\\{\frac{\alpha-2}{4}\right\\}=\left(\frac{2-\alpha}{4}\right)
Put value of mm in E (ii), we get
α(2α4)+2(2α4)=0\alpha\left(\frac{2-\alpha}{4}\right)+2\left(\frac{2-\alpha}{4}\right) =0
2αα24+42α4=0\frac{2 \alpha-\alpha^{2}}{4}+\frac{4-2 \alpha}{4} =0
α2+4=0\Rightarrow -\alpha^{2}+4=0
α2=4\Rightarrow \alpha^{2}=4
α=±2\Rightarrow \alpha=\pm 2