Solveeit Logo

Question

Question: If the perpendicular AD divides the base of the ∆ABC such that BD, CD and AD are in ratio 2 : 3 : 6,...

If the perpendicular AD divides the base of the ∆ABC such that BD, CD and AD are in ratio 2 : 3 : 6, then angle A is equal to –

A

π2\frac{\pi}{2}

B

π3\frac{\pi}{3}

C

π4\frac{\pi}{4}

D

π6\frac{\pi}{6}

Answer

π4\frac{\pi}{4}

Explanation

Solution

From ∆ADB, tan θ1 = = (26)\left( \frac { 2 } { 6 } \right)

or θ1 = tan–1 (26)\left( \frac { 2 } { 6 } \right) = tan–1 (13)\left( \frac { 1 } { 3 } \right) ……..(1)

and from ∆ADC, tan θ2 = = 36\frac { 3 } { 6 }

or θ2 = tan–1 (36)\left( \frac { 3 } { 6 } \right) = tan–1 (12)\left( \frac { 1 } { 2 } \right) ……..(2)

Q ∠A = θ1 + θ2

∠A = tan–1 (13)\left( \frac { 1 } { 3 } \right) + tan–1 (12)\left( \frac { 1 } { 2 } \right)

= tan–1 (1/3)+(1/2)1(1/3)(1/2)\frac { ( 1 / 3 ) + ( 1 / 2 ) } { 1 - ( 1 / 3 ) ( 1 / 2 ) } = tan–1 (1) = π4\frac { \pi } { 4 }.