Solveeit Logo

Question

Mathematics Question on Parabola

If the parabolas y2=4xy^2 = 4x and x2=32yx^2 = 32y intersect at (16,8)(16, 8) at an angle θ\theta , then θ\theta equals to

A

tan15/3tan^{-1} 5/3

B

tan14/5tan^{-1} 4/5

C

tan13/5tan^{-1} 3/5

D

π/2\pi/2

Answer

tan13/5tan^{-1} 3/5

Explanation

Solution

Given curves are
y2=4xy^2 = 4x
2ydydx=4\Rightarrow 2y \frac{dy}{dx} = 4
(dydx)(16,8)=416\Rightarrow \left(\frac{dy}{dx}\right)_{\left(16, 8\right)} = \frac{4}{16} (dydx)(16,8)14=m1\Rightarrow\left(\frac{dy}{dx}\right)_{\left(16, 8\right)} \frac{1}{4} = m_{1} (say)
and x2=32yx^{2} = 32y
2x=32dydx\Rightarrow 2x = 32 \frac{dy}{dx}
(dydx)(16,8)=2×1632\Rightarrow \left(\frac{dy}{dx}\right)_{\left(16, 8\right)} = \frac{2\times16}{32} (dydx)(16,8)=1=m2\Rightarrow\left(\frac{dy}{dx}\right)_{\left(16,8\right)} = 1 = m_{2}(say)
\therefore Angle between them, θ=tan1(m2m11+m1m2)\theta = tan^{-1}\left(\frac{m_{2}-m_{1}}{1+m_{1}m_{2}}\right)
=tan1(1141+1×14)= tan^{-1}\left(\frac{1-\frac{1}{4}}{1+1\times\frac{1}{4}}\right)
=tan1(3454)= tan^{-1}\left(\frac{\frac{3}{4}}{\frac{5}{4}}\right)
=tan1(35)= tan^{-1}\left(\frac{3}{5}\right)