Solveeit Logo

Question

Question: If the pair of straight lines given by \(Ax^{2} + 2Hxy + By^{2} = 0,(H^{2} > AB)\) forms an equilate...

If the pair of straight lines given by Ax2+2Hxy+By2=0,(H2>AB)Ax^{2} + 2Hxy + By^{2} = 0,(H^{2} > AB) forms an equilateral triangle with line ax+by+c=0ax + by + c = 0then (A+3B)(3A+B)(A + 3B)(3A + B) is

A

H2H^{2}

B

H- H^{}

C

2H22H^{2}

D

4H24H^{2}

Answer

4H24H^{2}

Explanation

Solution

We know that the pair of lines

(a23b2)x2+8abxy+(b23a2)y2=0(a^{2} - 3b^{2})x^{2} + 8abxy + (b^{2} - 3a^{2})y^{2} = 0with the line

.ax+by+c=0ax + by + c = 0form an equilateral triangle.

Hence comparing with Ax2+2Hxy+By2=0Ax^{2} + 2Hxy + By^{2} = 0

then A=a23b2,B=b23a2A = a^{2} - 3b^{2},B = b^{2} - 3a^{2}, 2H=8ab2H = 8ab

Now (A+3B)(3A+B)=(8a2)(8b2)(A + 3B)(3A + B) = ( - 8a^{2})( - 8b^{2})

(8ab)2=(2H)2=4H2(8ab)^{2} = (2H)^{2} = 4H^{2}