Question
Question: If the pair of perpendicular lines $4x^2 + by^2 + 2cos\theta \ xy + 12x + 2sin^2\theta y + c = 0$, $...
If the pair of perpendicular lines 4x2+by2+2cosθ xy+12x+2sin2θy+c=0, θ∈(23π,2π) intersect on x-axis then the area of triangle formed by the given pair of lines and y=2 is

65
265
465
265
265
Solution
For a pair of lines Ax2+2Hxy+By2+2Gx+2Fy+C=0, perpendicularity implies A+B=0. Here, A=4,B=b, so 4+b=0⟹b=−4. The intersection point (x0,y0) satisfies Ax0+Hy0+G=0 and Hx0+By0+F=0. Since it's on the x-axis, y0=0. 4x0+cosθ(0)+6=0⟹x0=−23. cosθx0−4(0)+sin2θ=0⟹cosθ(−23)+sin2θ=0⟹sin2θ=23cosθ. Using sin2θ=1−cos2θ, we get 1−cos2θ=23cosθ⟹2cos2θ+3cosθ−2=0. Factoring gives (2cosθ−1)(cosθ+2)=0. Since cosθ∈[−1,1], cosθ=21. Given θ∈(23π,2π), cosθ=21 is valid. Then sin2θ=1−(21)2=43. The intersection point is (−23,0). Substituting this point into the equation to find c: 4(−23)2−4(0)2+2(21)(−23)(0)+12(−23)+2(43)(0)+c=0⟹9−18+c=0⟹c=9. The equation of the pair of lines is 4x2−4y2+xy+12x+23y+9=0. To find the intersection with y=2: 4x2−4(2)2+x(2)+12x+23(2)+9=0⟹4x2−16+2x+12x+3+9=0⟹4x2+14x−4=0⟹2x2+7x−2=0. Let the roots be x1,x2. The base of the triangle is ∣x1−x2∣=∣2∣72−4(2)(−2)=249+16=265. The height of the triangle is the distance from (−23,0) to y=2, which is ∣2−0∣=2. Area =21×base×height=21×265×2=265.
