Solveeit Logo

Question

Question: If the pair of perpendicular lines $4x^2 + by^2 + 2cos\theta \ xy + 12x + 2sin^2\theta y + c = 0$, $...

If the pair of perpendicular lines 4x2+by2+2cosθ xy+12x+2sin2θy+c=04x^2 + by^2 + 2cos\theta \ xy + 12x + 2sin^2\theta y + c = 0, θ(3π2,2π)\theta \in (\frac{3\pi}{2}, 2\pi) intersect on x-axis then the area of triangle formed by the given pair of lines and y=2y = 2 is

A

65\sqrt{65}

B

652\frac{\sqrt{65}}{2}

C

654\frac{\sqrt{65}}{4}

D

2652\sqrt{65}

Answer

652\frac{\sqrt{65}}{2}

Explanation

Solution

For a pair of lines Ax2+2Hxy+By2+2Gx+2Fy+C=0Ax^2 + 2Hxy + By^2 + 2Gx + 2Fy + C = 0, perpendicularity implies A+B=0A+B=0. Here, A=4,B=bA=4, B=b, so 4+b=0    b=44+b=0 \implies b=-4. The intersection point (x0,y0)(x_0, y_0) satisfies Ax0+Hy0+G=0Ax_0 + Hy_0 + G = 0 and Hx0+By0+F=0Hx_0 + By_0 + F = 0. Since it's on the x-axis, y0=0y_0=0. 4x0+cosθ(0)+6=0    x0=324x_0 + \cos\theta(0) + 6 = 0 \implies x_0 = -\frac{3}{2}. cosθx04(0)+sin2θ=0    cosθ(32)+sin2θ=0    sin2θ=32cosθ\cos\theta x_0 - 4(0) + \sin^2\theta = 0 \implies \cos\theta(-\frac{3}{2}) + \sin^2\theta = 0 \implies \sin^2\theta = \frac{3}{2}\cos\theta. Using sin2θ=1cos2θ\sin^2\theta = 1-\cos^2\theta, we get 1cos2θ=32cosθ    2cos2θ+3cosθ2=01-\cos^2\theta = \frac{3}{2}\cos\theta \implies 2\cos^2\theta + 3\cos\theta - 2 = 0. Factoring gives (2cosθ1)(cosθ+2)=0(2\cos\theta - 1)(\cos\theta + 2) = 0. Since cosθ[1,1]\cos\theta \in [-1, 1], cosθ=12\cos\theta = \frac{1}{2}. Given θ(3π2,2π)\theta \in (\frac{3\pi}{2}, 2\pi), cosθ=12\cos\theta = \frac{1}{2} is valid. Then sin2θ=1(12)2=34\sin^2\theta = 1 - (\frac{1}{2})^2 = \frac{3}{4}. The intersection point is (32,0)(-\frac{3}{2}, 0). Substituting this point into the equation to find cc: 4(32)24(0)2+2(12)(32)(0)+12(32)+2(34)(0)+c=0    918+c=0    c=94(-\frac{3}{2})^2 - 4(0)^2 + 2(\frac{1}{2})(-\frac{3}{2})(0) + 12(-\frac{3}{2}) + 2(\frac{3}{4})(0) + c = 0 \implies 9 - 18 + c = 0 \implies c=9. The equation of the pair of lines is 4x24y2+xy+12x+32y+9=04x^2 - 4y^2 + xy + 12x + \frac{3}{2}y + 9 = 0. To find the intersection with y=2y=2: 4x24(2)2+x(2)+12x+32(2)+9=0    4x216+2x+12x+3+9=0    4x2+14x4=0    2x2+7x2=04x^2 - 4(2)^2 + x(2) + 12x + \frac{3}{2}(2) + 9 = 0 \implies 4x^2 - 16 + 2x + 12x + 3 + 9 = 0 \implies 4x^2 + 14x - 4 = 0 \implies 2x^2 + 7x - 2 = 0. Let the roots be x1,x2x_1, x_2. The base of the triangle is x1x2=724(2)(2)2=49+162=652|x_1 - x_2| = \frac{\sqrt{7^2 - 4(2)(-2)}}{|2|} = \frac{\sqrt{49+16}}{2} = \frac{\sqrt{65}}{2}. The height of the triangle is the distance from (32,0)(-\frac{3}{2}, 0) to y=2y=2, which is 20=2|2-0|=2. Area =12×base×height=12×652×2=652= \frac{1}{2} \times \text{base} \times \text{height} = \frac{1}{2} \times \frac{\sqrt{65}}{2} \times 2 = \frac{\sqrt{65}}{2}.