Solveeit Logo

Question

Mathematics Question on Definite Integral

If the orthocentre of the triangle, whose vertices are (1,2),(2,3)(1,2),(2,3) and (3,1)(3,1) is (α,β)(\alpha, \beta), then the quadratic equation whose roots are α+4β\alpha+4 \beta and 4α+β4 \alpha+\beta, is

A

x219x+90=0x^2-19 x+90=0

B

x220x+99=0x^2-20 x+99=0

C

x218x+80=0x^2-18 x+80=0

D

x222x+120=0x^2-22 x+120=0

Answer

x220x+99=0x^2-20 x+99=0

Explanation

Solution

The correct answer is option (B) : x 2−20 x +99=0

orthocentre of the triangle
(β3α2)(12)=1(\frac{β−3}{α−2})(\frac{1}{−2})=−1
β3=2α4β−3=2α−4
β=2α1β=2α−1
mAH×mBC=1m_{AH}\times m_{BC}=−1
(β2α1)(2)=1⇒(\frac{β−2}{α−1})(−2)=−1
2β4=α1⇒2β−4=α−1
2(2α1)=α+3⇒2(2α−1)=α+3
3α=5⇒3α=5
α=53,β=73α=\frac{5}{3}, β=\frac{7}{3} ​
H(53,73)⇒H(\frac{5}{3}, \frac{7}{3})
α+4β=53+283=333=11α+4β= \frac{5}{3} + \frac{28}{3} ​= \frac{33}{3} ​=11
β+4α=73+203=273=9β+4α= \frac{7}{3} + \frac{20}{3} = \frac{27}{3} = 9
x220x+99=0x^2 −20x+99=0