Solveeit Logo

Question

Question: If the ordinate \(x = a\) divides the area bounded by the curve \(y = \left( 1 + \frac{8}{x^{2}} \ri...

If the ordinate x=ax = a divides the area bounded by the curve y=(1+8x2),y = \left( 1 + \frac{8}{x^{2}} \right), xx -axis and the ordinates x=2,x = 2, x=4x = 4 into two equal parts, then a=a =

A

8

B

222\sqrt{2}

C

2

D

2\sqrt{2}

Answer

222\sqrt{2}

Explanation

Solution

Let the ordinate at x=ax = adivide the area into two equal parts

Area of AMNBAMNB

=24(1+8x2) dx=[x8x]24=4= {\int_{2}^{4}{\left( 1 + \frac{8}{x^{2}} \right)\ dx = \left\lbrack x - \frac{8}{x} \right\rbrack}}_{2}^{4} = 4

Area of ACDM=2a(1+8x2)dx=2ACDM = \int_{2}^{a}\left( 1 + \frac{8}{x^{2}} \right)dx = 2

On solving, we get a=±22a = \pm 2\sqrt{2};Since a>0a > 0a=22a = 2\sqrt{2}.