Solveeit Logo

Question

Mathematics Question on Binomial theorem

If the number of terms in the expansion of (12x+4x2)n,x0\left( 1 - \frac{2}{x} + \frac{4}{x^2} \right)^n , x \neq 0 , is 2828 , then the sum of the coefficients of all the terms in this expansion, is :

A

64

B

2187

C

243

D

729

Answer

729

Explanation

Solution

Number of terms =(n+1)(n+2)2=28= \frac{(n +1)(n+2)}{2} = 28
n=6\Rightarrow n = 6
a0+a1x+a2x2+....+a2nx2n=(12x+4x2)n\therefore \, \, a_0 + \frac{a_1}{x} + \frac{a_2}{x^2} + .... + \frac{a_2n}{x^{2n}} = \left( 1 - \frac{2}{x} + \frac{4}{x^2} \right)^n
Put x=1,n=6,a0+a1+a2+...+a2n=36=729x = 1, n = 6 , a_0 + a_1 + a_2 + ... + a_{2n} = 3^6 = 729