Solveeit Logo

Question

Question: If the number of sides of two regular polygons having the same perimeter be n and 2n respectively, t...

If the number of sides of two regular polygons having the same perimeter be n and 2n respectively, their areas are in the ratio

A

2cos(πn)cos(π2n)\frac { 2 \cos \left( \frac { \pi } { n } \right) } { \cos \left( \frac { \pi } { 2 n } \right) }

B

2cos(πn)1+cos(πn)\frac { 2 \cos \left( \frac { \pi } { n } \right) } { 1 + \cos \left( \frac { \pi } { n } \right) }

C

cos(πn)sin(πn)\frac { \cos \left( \frac { \pi } { n } \right) } { \sin \left( \frac { \pi } { n } \right) }

D

None of these

Answer

2cos(πn)1+cos(πn)\frac { 2 \cos \left( \frac { \pi } { n } \right) } { 1 + \cos \left( \frac { \pi } { n } \right) }

Explanation

Solution

Let s be the perimeter of both the polygons. Then the length of each side of the first polygon is sn\frac { s } { n } and that of second polygon is s2n\frac { s } { 2 n } .

If A2A _ { 2 }denote their areas, then A1=n4[sn]2cotπnA _ { 1 } = \frac { n } { 4 } \left[ \frac { s } { n } \right] ^ { 2 } \cot \frac { \pi } { n } and

A2=14(2n)(s2n)2cot(π2n)A _ { 2 } = \frac { 1 } { 4 } \cdot ( 2 n ) \left( \frac { s } { 2 n } \right) ^ { 2 } \cdot \cot \left( \frac { \pi } { 2 n } \right)

A1A2=2cot(πn)cot(π2n)=2cos(πn)sin(π2n)sin(πn)cos(π2n)\frac { A _ { 1 } } { A _ { 2 } } = \frac { 2 \cot \left( \frac { \pi } { n } \right) } { \cot \left( \frac { \pi } { 2 n } \right) } = \frac { 2 \cos \left( \frac { \pi } { n } \right) \sin \left( \frac { \pi } { 2 n } \right) } { \sin \left( \frac { \pi } { n } \right) \cos \left( \frac { \pi } { 2 n } \right) } =2cos(πn)sin(π2n)2sin(π2n)cos(π2n)cos(π2n)= \frac { 2 \cos \left( \frac { \pi } { n } \right) \sin \left( \frac { \pi } { 2 n } \right) } { 2 \sin \left( \frac { \pi } { 2 n } \right) \cos \left( \frac { \pi } { 2 n } \right) \cos \left( \frac { \pi } { 2 n } \right) }A1A2=2cos(πn)1+cos(πn)\frac { A _ { 1 } } { A _ { 2 } } = \frac { 2 \cos \left( \frac { \pi } { n } \right) } { 1 + \cos \left( \frac { \pi } { n } \right) } .