Solveeit Logo

Question

Question: If the number of 5 elements subset of the set \(A\left\\{ {{a}_{1}},{{a}_{2}},{{a}_{3}},...............

If the number of 5 elements subset of the set A\left\\{ {{a}_{1}},{{a}_{2}},{{a}_{3}},.....................,{{a}_{20}} \right\\} of 20 distinct elements is k times the number of 5 elements subsets containing a4{{a}_{4}}, then k is
A. 5
B. 207\dfrac{20}{7}
C. 4
D. 103\dfrac{10}{3}

Explanation

Solution

- Hint: In general the number of ways to select r thing n number of things is nCr^{n}{{C}_{r}}.
We can define nCr^{n}{{C}_{r}}as below:
nCr=n!r!×(nr)!^{n}{{C}_{r}}=\dfrac{n!}{r!\times (n-r)!}

Complete step-by-step solution -
Given set is A\left\\{ {{a}_{1}},{{a}_{2}},{{a}_{3}},.....................,{{a}_{20}} \right\\}
In this number of elements = 20
We need to choose a subset of 5 elements from a given set.
So number of ways to select 5 elements subset from 20 element set A is 20C5^{20}{{C}_{5}}
We can find value of 20C5^{20}{{C}_{5}} as below:
20C5=20!5!×(205)!{{\Rightarrow }^{20}}{{C}_{5}}=\dfrac{20!}{5!\times (20-5)!} \left\\{ {{\because }^{n}}{{C}_{r}}=\dfrac{n!}{r!\times (n-r)!} \right\\}
20C5=20!5!×15!{{\Rightarrow }^{20}}{{C}_{5}}=\dfrac{20!}{5!\times 15!}
Number of ways to select 5 subset containing a4{{a}_{4}} is 19C4^{19}{{C}_{4}}.
We can find value of 19C4^{19}{{C}_{4}} as below:
19C4=19!4!×(194)!{{\Rightarrow }^{19}}{{C}_{4}}=\dfrac{19!}{4!\times (19-4)!} \left\\{ {{\because }^{n}}{{C}_{r}}=\dfrac{n!}{r!\times (n-r)!} \right\\}
19C4=19!4!×15!{{\Rightarrow }^{19}}{{C}_{4}}=\dfrac{19!}{4!\times 15!}
As the given number of subset of 5 elements is k times the number of 5 subset containing a4{{a}_{4}}. Hence we can write
20!5!×15!=k19!4!×15!\Rightarrow \dfrac{20!}{5!\times 15!}=k\dfrac{19!}{4!\times 15!}
20×19!5×4!=k19!4!\Rightarrow \dfrac{20\times 19!}{5\times 4!}=k\dfrac{19!}{4!}
205=k\Rightarrow \dfrac{20}{5}=k
k=4\Rightarrow k=4

Hence the required value of k is 4.

Note: In this when we select subset of 5 elements containing a4{{a}_{4}}, in this case we already selected 1 element i.e a4{{a}_{4}}, so from this total number of elements will be 19 and we need to select only 4 element of subset. We need to remember this point.
In general, the factorial of n can be defined as a product of all integers from n to 1. We can write it as
n!=n(n1)(n2)(n3)................................3.2.1n!=n(n-1)(n-2)(n-3)................................3.2.1
It is defined only for positive integers.