Solveeit Logo

Question

Question: If the n<sup>th</sup> term of geometric progression \(5 , - \frac { 5 } { 2 } , \frac { 5 } { 4 } , ...

If the nth term of geometric progression 5,52,54,58,5 , - \frac { 5 } { 2 } , \frac { 5 } { 4 } , - \frac { 5 } { 8 } , \ldots is 51024\frac { 5 } { 1024 }, then the value of n is.

A

11

B

10

C

9

D

4

Answer

11

Explanation

Solution

Tn=arn1T _ { n } = a r ^ { n - 1 }

(12)10=(12)n1\left( \frac { - 1 } { 2 } \right) ^ { 10 } = \left( \frac { - 1 } { 2 } \right) ^ { n - 1 }10=n110 = n - 1n=11n = 11.