Solveeit Logo

Question

Question: If the normal to the parabola y<sup>2</sup> = 4ax at the point (at<sup>2</sup>, 2at) cuts the parabo...

If the normal to the parabola y2 = 4ax at the point (at2, 2at) cuts the parabola again at (aT2, 2aT), then

A

T2≥ 8

B

T ∈ (- ∞, -8) ∪ (8, ∞)

C

–2 ≤ T ≤ 2

D

T2< 8

Answer

T2≥ 8

Explanation

Solution

Equation of normal to the parabola y2 = 4ax at the point (at2, 2at) is y + tx = 2at + at3. . . . .(i)

(i) cuts the parabola again at (aT2, 2aT).

Then, 2aT + t aT2 = 2at +at3

⇒ 2a(T – t) = – at(T2 – t2) ⇒ 2 = – t(T + t) [t ≠ T]

⇒ t2 + tT + 2 = 0.

Since t is real T2 – 4.2.1 ≥ 0 ⇒ T2 ≥ 8