Solveeit Logo

Question

Question: If the normal to the curve \(y = f(x)\) at the point \((3,4)\) makes an angle \(\frac{3\pi}{4}\) wit...

If the normal to the curve y=f(x)y = f(x) at the point (3,4)(3,4) makes an angle 3π4\frac{3\pi}{4} with the positive x-axis then f(3)f^{'}(3) is equal to

A

– 1

B

34\frac{- 3}{4}

C

43\frac{4}{3}

D

1

Answer

1

Explanation

Solution

Slope of the normal =1dy/dx= \frac{- 1}{dy/dx}

tan3π4=1(dydx)(3,4)\tan\frac{3\pi}{4} = \frac{- 1}{\left( \frac{dy}{dx} \right)_{(3,4)}}

\therefore (dydx)(3,4)=1\left( \frac{dy}{dx} \right)_{(3,4)} = 1; f(3)=1f^{'}(3) = 1.