Solveeit Logo

Question

Question: If the normal to the curve \[{x^{\dfrac{2}{3}}} + {y^{\dfrac{2}{3}}} = {a^{\dfrac{2}{3}}}\] makes an...

If the normal to the curve x23+y23=a23{x^{\dfrac{2}{3}}} + {y^{\dfrac{2}{3}}} = {a^{\dfrac{2}{3}}} makes an angle ϕ\phi with the xaxisx - axis , then its equation is :
A.x sin ϕ + y cos ϕ = a{\text{x sin }}\phi {\text{ + y cos }}\phi {\text{ }} = {\text{ }}a
B.y cos ϕ  x sin ϕ = a cos 2ϕy{\text{ cos }}\phi {\text{ }} - {\text{ }}x{\text{ sin }}\phi {\text{ }} = {\text{ }}a{\text{ cos }}2\phi
C.x cos ϕ + y sin ϕ = a sin 2ϕ{\text{x cos }}\phi {\text{ + y sin }}\phi {\text{ }} = {\text{ }}a{\text{ sin }}2\phi
D.none of these

Explanation

Solution

Hint : We have to find the equation of the curve normal to x23+y23=a23{x^{\dfrac{2}{3}}} + {y^{\dfrac{2}{3}}} = {a^{\dfrac{2}{3}}} which makes an angle ϕ\phi with the xaxisx - axis . We solve this question using the concept of equation of line and the slope of the line . We should also have the knowledge about the concept of normal to the curve and the tangent of the curve.

Complete step-by-step answer :
Given : x23+y23=a23(1){x^{\dfrac{2}{3}}} + {y^{\dfrac{2}{3}}} = {a^{\dfrac{2}{3}}} - - - - (1)
The slope of the curve is given as :
slope = dydxslope{\text{ }} = {\text{ }}\dfrac{{dy}}{{dx}}
So , we have to differentiate (1)(1) with respect to ‘ xx ’ .
Differentiating y with respect to ‘ xx ’ , we get
Using (Derivative of xn=n×xn1{x^n} = n \times {x^{n - 1}} )
(Derivative of constant = 0constant{\text{ }} = {\text{ }}0 )
23x13+23y13×dydx=0\dfrac{2}{3}{x^{\dfrac{{ - 1}}{3}}} + \dfrac{2}{3}{y^{\dfrac{{ - 1}}{3}}} \times \dfrac{{dy}}{{dx}} = 0
dydx=[yx]13\dfrac{{dy}}{{dx}} = {\left[ {\dfrac{{ - y}}{x}} \right]^{\dfrac{1}{3}}}
Let P(h , k)P\left( {h{\text{ }},{\text{ }}k} \right) be any point on the curve (1)(1)
Slope of the normal at PP is m=(hk)13m = {\left( {\dfrac{h}{k}} \right)^{\dfrac{1}{3}}}
It is given that, the slope of the normal =tanϕ= \tan \phi
(hk)13=tanϕ{\left( {\dfrac{h}{k}} \right)^{\dfrac{1}{3}}} = \tan \phi
As , tan x=sinxcosx{\text{tan x}} = \dfrac{{\sin x}}{{\cos x}}
(hk)13=sinϕcosϕ{\left( {\dfrac{h}{k}} \right)^{\dfrac{1}{3}}} = \dfrac{{\sin \phi }}{{\cos \phi }}
h13sinϕ=k13cosϕ\dfrac{{{h^{\dfrac{1}{3}}}}}{{\sin \phi }} = \dfrac{{{k^{\dfrac{1}{3}}}}}{{\cos \phi }}
Let ,
h13sinϕ=k13cosϕ=a13\dfrac{{{h^{\dfrac{1}{3}}}}}{{\sin \phi }} = \dfrac{{{k^{\dfrac{1}{3}}}}}{{\cos \phi }} = {a^{\dfrac{1}{3}}}
So ,
h13sinϕ=a13\dfrac{{{h^{\dfrac{1}{3}}}}}{{\sin \phi }} = {a^{\dfrac{1}{3}}} and k13cosϕ=a13\dfrac{{{k^{\dfrac{1}{3}}}}}{{\cos \phi }} = {a^{\dfrac{1}{3}}}
Cubing both sides , we get
h=asin3ϕh = a{\sin ^3}\phi and k=acos3ϕk = a{\cos ^3}\phi
The equation of the normal is given as :
(yk)=m(xh)\left( {y - k} \right) = m\left( {x - h} \right)
Where m is the slope of the equation
Substituting the values in the equation of line , we get
yacos3ϕ=tanϕ×(xasin3ϕ)y - a{\cos ^3}\phi = \tan \phi \times (x - a{\sin ^3}\phi )
As , tan x=sinxcosx{\text{tan x}} = \dfrac{{\sin x}}{{\cos x}}
yacos3ϕ=sinϕcosϕ×(xasin3ϕ)y - a{\cos ^3}\phi = \dfrac{{\sin \phi }}{{\cos \phi }} \times (x - a{\sin ^3}\phi )
On simplifying , we get
ycosϕacos4ϕ=sinϕ×xasin4ϕy\cos \phi - a{\cos ^4}\phi = \sin \phi \times x - a{\sin ^4}\phi
xsinϕycosϕ=asin4ϕacos4ϕx\sin \phi - y\cos \phi = a{\sin ^4}\phi - a{\cos ^4}\phi
Taking aa common , we get
xsinϕycosϕ=a[sin4ϕcos4ϕ]x\sin \phi - y\cos \phi = a[{\sin ^4}\phi - {\cos ^4}\phi ]
We , know that a2b2=(a+b)(ab){a^2} - {b^2} = (a + b)(a - b)
So , we can express it as
xsinϕycosϕ=a[sin2ϕcos2ϕ][sin2ϕ+cos2ϕ]x\sin \phi - y\cos \phi = a[{\sin ^2}\phi - {\cos ^2}\phi ][{\sin ^2}\phi + {\cos ^2}\phi ]
We know that , [sin2ϕ+cos2ϕ]=1[{\sin ^2}\phi + {\cos ^2}\phi ] = 1
So ,
xsinϕycosϕ=a[sin2ϕcos2ϕ]x\sin \phi - y\cos \phi = a[{\sin ^2}\phi - {\cos ^2}\phi ]
Also , we know that cos2x=cos2xsin2x\cos 2x = {\cos ^2}x - {\sin ^2}x
xsinϕycosϕ=acos2ϕx\sin \phi - y\cos \phi = - a\cos 2\phi
Taking (1)(-1) common , we get
ycosϕxsinϕ=acos2ϕy\cos \phi - x\sin \phi = a\cos 2\phi
Thus , the equation of the curve is ycosϕxsinϕ=acos2ϕy\cos \phi - x\sin \phi = a\cos 2\phi .
Hence , the correct option is (2)(2) .
So, the correct answer is “Option 2”.

Note : If dydx\dfrac{{dy}}{{dx}} does not exist at the point (x0, y0)\left( {{x_0},{\text{ }}{y_0}} \right) , then the tangent at this point is parallel to the yaxisy - axis and its equation is x=x0x = {x_0} .
If tangent to a curve y = f(x)y{\text{ }} = {\text{ }}f\left( x \right) at x=x0x = {x_0} is parallel to x  axisx{\text{ }} - {\text{ }}axis , then dydx\dfrac{{dy}}{{dx}} at (x=x0)= 0(x = {x_0}) = {\text{ }}0 .
Slope of the equation is also given as m=tan xm = \tan {\text{ }}x , where xx is the angle which the line makes with the positive x  axisx{\text{ }} - {\text{ }}axis .