Solveeit Logo

Question

Question: If the normal at \('\varphi'\) on the hyperbola \((a\sec\varphi,b\tan\varphi)\) meets transverse axi...

If the normal at φ'\varphi' on the hyperbola (asecφ,btanφ)(a\sec\varphi,b\tan\varphi) meets transverse axis at G, then AG.AG=AG.A^{'}G =

(Where A and AA^{'} are the vertices of the hyperbola)

A

a2(e4sec2φ1)a^{2}(e^{4}\sec^{2}\varphi - 1)

B

(a2e4sec2φ1)(a^{2}e^{4}\sec^{2}\varphi - 1)

C

a2(1e4sec2φ)a^{2}(1 - e^{4}\sec^{2}\varphi)

D

None of these

Answer

a2(e4sec2φ1)a^{2}(e^{4}\sec^{2}\varphi - 1)

Explanation

Solution

The equation of normal at (asecφ,btanφ)(a\sec\varphi,b\tan\varphi) to the given hyperbola is axcosφ+bycotφ=(a2+b2)ax\cos\varphi + by\cot\varphi = (a^{2} + b^{2}) This meets the transverse axis i.e., x-axis at G. So the co-ordinates of G are ((a2+b2a)secφ,0)\left( \left( \frac{a^{2} + b^{2}}{a} \right)\sec\varphi,0 \right) and the co-ordinates of the vertices A and AA^{'} are A(a,0)A(a,0) and A(a,0)A^{'}( - a,0) respectively.

AG.AG=(a+(a2+b2a)secφ)(a+(a2+b2a)secφ)\therefore AG.A^{'}G = \left( - a + \left( \frac{a^{2} + b^{2}}{a} \right)\sec\varphi \right)\left( a + \left( \frac{a^{2} + b^{2}}{a} \right)\sec\varphi \right)=(a2+b2a)2sec2φa2\left( \frac{a^{2} + b^{2}}{a} \right)^{2}\sec^{2}\varphi - a^{2}=(ae2)2sec2φa2(ae^{2})^{2}\sec^{2}\varphi - a^{2}=a2(e4sec2φ1)a^{2}(e^{4}\sec^{2}\varphi - 1)