Solveeit Logo

Question

Mathematics Question on Ellipse

If the normal at the point P(θ)P(\theta) to the ellipse x214+y25=1\frac{x^2}{14} + \frac {y^2}{5} = 1 intersects it again at the point Q(2θ),Q(2\theta), then cosθcos \theta equals to

A

23-\frac{2}{3}

B

23\frac{2}{3}

C

32\frac{3}{2}

D

32-\frac{3}{2}

Answer

23-\frac{2}{3}

Explanation

Solution

Any point on the ellipse is
(14cosθ,5sinθ)(\sqrt{14} cos\,\theta, \sqrt{5} sin\,\theta)
\therefore Equation of normal at
(14cosθ,5sinθ)(\sqrt{14}\,cos\,\theta, \sqrt{5}\,sin\,\theta) is
14xsecθ,5ycosecθ=9\sqrt{14} x\,sec\,\theta, \sqrt{5}y\,cosec\,\theta = 9
Since, it passes through
(14cos2θ,5sin2θ)(\sqrt{14} \,cos\,2\theta, \sqrt{5}\,sin\,2\theta)
1414cos2θsecθ\therefore \sqrt{14}\sqrt{14} \,cos\,2\theta \,sec\,\theta
55sin2θcosecθ=9- \sqrt{5} \sqrt{5}\,sin\,2\theta \,cosec\,\theta = 9
14cos2θcosθ5sinθsinθ=9\Rightarrow 14 \frac{cos\,2\theta}{cos\,\theta} - 5 \frac{sin\,\theta}{sin\,\theta} = 9
14(2cos2θ1)10cos2θ=9cosθ\Rightarrow 14(2\,cos^2\,\theta -1) - 10\,cos^2\,\theta = 9\,cos\,\theta
18cos2θ9cosθ14=0\Rightarrow 18\,cos^2\theta - 9\,cos\,\theta - 14 = 0
(3cosθ+2)(6cosθ7)=0\Rightarrow (3\,cos\,\theta + 2)(6\,cos\,\theta - 7) = 0
cosθ=23,cosθ76\Rightarrow cos\,\theta = -\frac{2}{3}, cos\,\theta \ne \frac{7}{6}