Solveeit Logo

Question

Question: If the normal at the end of the latus rectum of ellipse \(\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}...

If the normal at the end of the latus rectum of ellipse x2a2+y2b2=1\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 passes through(0,b)(0, - b), then find the value of e4+e2{e^4} + {e^2}(where ee is eccentricity).

Explanation

Solution

Hint: We know that the coordinates of the endpoint of latus rectum of ellipse lying in the first quadrant is (ae,b2a)\left( {ae,\dfrac{{{b^2}}}{a}} \right). Now, according to the information given in the question, a normal is drawn at this point of ellipse.

Complete step-by-step answer:
The general equation of normal to ellipse x2a2+y2b2=1\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 at point (x1,y1)\left( {{x_1},{y_1}} \right) is a2xx1b2yy1=a2b2\dfrac{{{a^2}x}}{{{x_1}}} - \dfrac{{{b^2}y}}{{{y_1}}} = {a^2} - {b^2}. Here, the point at which normal is drawn is (ae,b2a)\left( {ae,\dfrac{{{b^2}}}{a}} \right). So, equation of normal is:

a2xaeb2yb2a=a2b2, axeay=a2b2  \Rightarrow \dfrac{{{a^2}x}}{{ae}} - \dfrac{{{b^2}y}}{{\dfrac{{{b^2}}}{a}}} = {a^2} - {b^2}, \\\ \Rightarrow \dfrac{{ax}}{e} - ay = {a^2} - {b^2} \\\

Now, again from the question, the normal is passing through (0,b)(0, - b) therefore, satisfying this point in the above equation, we’ll get:
a×0ea(b)=a2b2, ab=a2b2.....(i)  \Rightarrow \dfrac{{a \times 0}}{e} - a( - b) = {a^2} - {b^2}, \\\ \Rightarrow ab = {a^2} - {b^2} .....(i) \\\
For ellipse, we know that:
b2=a2(1e2).....(ii)\Rightarrow {b^2} = {a^2}(1 - {e^2}) .....(ii)
a2b2=a2e2\Rightarrow {a^2} - {b^2} = {a^2}{e^2}
Putting this in equation(i)(i), we’ll get:
a2e2=ab, e2=ba  \Rightarrow {a^2}{e^2} = ab, \\\ \Rightarrow {e^2} = \dfrac{b}{a} \\\
From equation(ii)(ii), we have:
b2=a2(1e2) (ba)2=(1e2)  \Rightarrow {b^2} = {a^2}(1 - {e^2}) \\\ \Rightarrow {\left( {\dfrac{b}{a}} \right)^2} = (1 - {e^2}) \\\
Putting the value of ba\dfrac{b}{a} from above:
(e2)2=1e2, e4=1e2, e4+e2=1  \Rightarrow {({e^2})^2} = 1 - {e^2}, \\\ \Rightarrow {e^4} = 1 - {e^2}, \\\ \Rightarrow {e^4} + {e^2} = 1 \\\
Thus the value of e4+e2{e^4} + {e^2} is 11.

Note: The equation of normal can also be determined using point-slope method. The point of normality is the end point of the latus rectum and the slope of normal is the value of dxdy - \dfrac{{dx}}{{dy}} at that point. So, for this method we have to calculate the value of dxdy - \dfrac{{dx}}{{dy}} separately.