Question
Mathematics Question on Ellipse
If the normal at one end of a latus-rectum of an ellipse a2x2+b2y2=1 passes through one extremity of the minor axis, then the eccentricity of the ellipse is given by the equation
A
e2+e−1=0
B
e2+e+1=0
C
e4+e2+1=0
D
e4+e2−1=0
Answer
e4+e2−1=0
Explanation
Solution
Normal at (ae,ab2) of ellipse a2x2+b2y2=1 is
ae/a2x−ae=ab2/b2y−b2/a(x1/a2x−x1=y1/b2y−y1)
It passes thro? (0,−b) if ae/a20−ae=1/a−b−b2/a
⇒−a2=−a(b+ab2)
⇒a=aab+b2
⇒a2=ab+b2=ab+a2−a2e2
⇒ab=a2e2
⇒b=ae2
⇒b2=a2e4
⇒a2(1−e2)=a2e4
⇒1−e2=e4
⇒e4+e2=1