Solveeit Logo

Question

Mathematics Question on Ellipse

If the normal at one end of a latus-rectum of an ellipse x2a2+y2b2=1\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 passes through one extremity of the minor axis, then the eccentricity of the ellipse is given by the equation

A

e2+e1=0e^2+e-1=0

B

e2+e+1=0e^2+e+1=0

C

e4+e2+1=0e^4+e^2+1=0

D

e4+e21=0e^4+e^2-1=0

Answer

e4+e21=0e^4+e^2-1=0

Explanation

Solution

Normal at (ae,b2a)\left(ae, \frac{b^{2}}{a}\right) of ellipse x2a2+y2b2=1\frac{x^{2}}{a^{2}} +\frac{y^{2}}{b^{2}} = 1 is
xaeae/a2=yb2/ab2a/b2(xx1x1/a2=yy1y1/b2)\frac{ x-ae}{ae/a^{2}} =\frac{ y-b^{2}/a}{\frac{b^{2}}{a}/b^{2}} \left(\frac{x-x_{1}}{x_{1}/ a^{2}} = \frac{y-y_{1}}{y_{1}/b^{2}}\right)

It passes thro? (0,b)\left(0, -b\right) if 0aeae/a2=bb2/a1/a\frac{0-ae}{ae/a^{2}} = \frac{-b-b^{2}/a}{1/a}
a2=a(b+b2a)\Rightarrow -a^{2} = -a\left(b+\frac{b^{2}}{a}\right)
a=ab+b2a\Rightarrow a= \frac{ab+b^{2}}{a}
a2=ab+b2=ab+a2a2e2\Rightarrow a^{2} = ab+b^{2} = ab +a^{2}-a^{2}e^{2}
ab=a2e2\Rightarrow ab = a^{2}e^{2}
b=ae2\Rightarrow b = ae^{2}
b2=a2e4\Rightarrow b^{2} = a^{2}e^{4}
a2(1e2)=a2e4\Rightarrow a^{2}\left(1-e^{2}\right) = a^{2}e^{4}
1e2=e4\Rightarrow 1-e^{2} = e^{4}
e4+e2=1\Rightarrow e^{4}+e^{2}=1