Solveeit Logo

Question

Question: If the normal at \(\left( ct,\frac{c}{t} \right)\) on the curve \(xy = c^{2}\) meets the curve again...

If the normal at (ct,ct)\left( ct,\frac{c}{t} \right) on the curve xy=c2xy = c^{2} meets the curve again in t′, then

A

t=1t3t^{'} = - \frac{1}{t^{3}}

B

t=1tt^{'} = - \frac{1}{t}

C

t=1t2t^{'} = \frac{1}{t^{2}}

D

t2=1t2t^{'2} = - \frac{1}{t^{2}}

Answer

t=1t3t^{'} = - \frac{1}{t^{3}}

Explanation

Solution

The equation of the tangent at (ct,ct)\left( ct,\frac{c}{t} \right) is ty=t3xct4+cty = t^{3}x - ct^{4} + c

If it passes through(ct,ct)\left( ct^{'},\frac{c}{t^{'}} \right) then

tct=t3ctct4+c\frac{tc}{t^{'}} = t^{3}ct^{'} - ct^{4} + ct=t3t2t4t+tt = t^{3}t^{'2} - t^{4}t^{'} + t^{'}

tt=t3t(tt)t - t^{'} = t^{3}t^{'}(t^{'} - t)t=1t3t^{'} = - \frac{1}{t^{3}}