Question
Question: If the normal at \(\left( ct,\frac{c}{t} \right)\) on the curve \(xy = c^{2}\) meets the curve again...
If the normal at (ct,tc) on the curve xy=c2 meets the curve again in t′, then
A
t′=−t31
B
t′=−t1
C
t′=t21
D
t′2=−t21
Answer
t′=−t31
Explanation
Solution
The equation of the tangent at (ct,tc) is ty=t3x−ct4+c
If it passes through(ct′,t′c) then
⇒ t′tc=t3ct′−ct4+c ⇒ t=t3t′2−t4t′+t′
⇒ t−t′=t3t′(t′−t) ⇒ t′=−t31