Solveeit Logo

Question

Mathematics Question on Arithmetic Progression

If the normal at (ap2,2ap)(ap^2, 2ap) on the parabola y2=4ax,y^2 = 4ax, meets the parabola again at (aq2,2aq)(aq^2, 2aq), then

A

p2+pq+2=0p^2 + pq + 2 = 0

B

p2pq+2=0p^2 - pq + 2 = 0

C

q2+pq+2=0q^2 + pq + 2 = 0

D

p2+pq+1=0p^2 + pq + 1 = 0

Answer

p2+pq+2=0p^2 + pq + 2 = 0

Explanation

Solution

Since the normal at (ap2,2ap)(ap^2, 2ap) on y2=4axy^2 = 4ax meets the curve again at (aq2,2aq)(aq^2, 2aq), therefore px+y=2ap+ap3px + y = 2ap + ap^3 passes through (aq2,2aq)(aq^2,2aq)
  paq2+2aq=2ap+ap3\Rightarrow \; paq^2 + 2aq = 2ap + ap^3   p(q2p2)=2(pq)\Rightarrow \; p(q^2-p^2) = 2(p - q)   p(q+p)=2\Rightarrow \; p (q + p) = -2   p2+pq+2=0\Rightarrow \; p^2 + pq + 2 = 0