Solveeit Logo

Question

Question: If the normal at any point P on ellipse \(\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}}\)=1 meets the au...

If the normal at any point P on ellipse x2a2+y2b2\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}}=1 meets the auxillary circle at Q and R such that ŠQOR = 90ŗ where O is centre of ellipse , then –

A

a4 + 2b4³ 3a2b2

B

a4 + 2b4³ 5a2b2 + 2a3b

C

a4 + 2b4³ 3a2b2 + ab

D

None

Answer

a4 + 2b4³ 5a2b2 + 2a3b

Explanation

Solution

Normal at P(acosq, bsinq) is

ax secq – by cosecq = a2 – b2

homogenising with auxillary circle

x2 + y2 = a2 + b2

x2 + y2 = (a2 + b2) (axsecθbycosecθ)2(a2b2)2\frac{(ax\sec\theta - by\cos ec\theta)^{2}}{(a^{2} - b^{2})^{2}}

\ for ŠQOR = 900

Coefft. of x2 + Cofft. of y2 = 0

1 – a4sec2θ(a2b2)2\frac{a^{4}\sec^{2}\theta}{(a^{2} - b^{2})^{2}} + 1 – a2b2cosec2θ(a2b2)2\frac{a^{2}b^{2}\cos ec^{2}\theta}{(a^{2} - b^{2})^{2}} = 0

a4 – 5a2b2 + 2b4 = a4tan2q + a2b2cot2q

\ AM ³ GM

a4 – 5a2b2 + 2b4 ³ 2a3b69