Solveeit Logo

Question

Question: If the normal at an end of a latus rectum passes through the extremity of the minor axis then eccent...

If the normal at an end of a latus rectum passes through the extremity of the minor axis then eccentricity of the ellipse is given by

A

e2 + e + 1 = 0

B

e4 + e2 + 1 = 0

C

e4 – e2 – 1 = 0

D

e4 + e2 – 1 = 0

Answer

e4 + e2 – 1 = 0

Explanation

Solution

Let equation of ellipse be

x2a2+y2b2=1\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 and L(ae,6mub2a)\left( ae,\mspace{6mu}\frac{b^{2}}{a} \right)

be one end of a latus rectum through S(ae, 0)

Now equation of normal at L is a2xaeb2yb2/a=a2b2\frac{a^{2}x}{ae} - \frac{b^{2}y}{b^{2}/a} = a^{2} - b^{2}axeay=a2e2\frac{ax}{e} - ay = a^{2}e^{2}

xey=ae2\frac{x}{e} - y = ae^{2}

Now this normal passing through L’(0, b)

∴ b = ae2

⇒ b2 =a2e4

∴ a2(1 – e2) = a2e4

⇒ e4 + e2 – 1 = 0