Question
Question: If the non-zero vectors **a** and **b** are perpendicular to each other, then the solution of the eq...
If the non-zero vectors a and b are perpendicular to each other, then the solution of the equation r×a=b is given by
A
r=xa+a.a1(a×b)
B
r=xb−b.b1(a×b)
C
r=xa×b
D
r=xb×a
Answer
r=xa+a.a1(a×b)
Explanation
Solution
Since a,b and a×b are non-coplanar,
hence r=xa+yb+z(a×b) for some scalars x,y and z.
Now, b=r×a={xa+yb+z(a×b)}×a
=y(b×a)+z[(a×b)×a]=−y(a×b)−z[a×(a×b)]
=−y(a×b)−z[(a.b)a−(a.a)b]
=−y(a×b)+z(a.a)b, {∵a.b=0}
⇒y=0 and z=(a.a)1⇒r=xa+a.a1(a×b).