Solveeit Logo

Question

Question: If the non-zero vectors **a** and **b** are perpendicular to each other, then the solution of the eq...

If the non-zero vectors a and b are perpendicular to each other, then the solution of the equation r×a=b\mathbf{r} \times \mathbf{a} = \mathbf{b} is given by

A

r=xa+1a.a(a×b)\mathbf{r} = x\mathbf{a} + \frac{1}{\mathbf{a}.\mathbf{a}}(\mathbf{a} \times \mathbf{b})

B

r=xb1b.b(a×b)\mathbf{r} = x\mathbf{b} - \frac{1}{\mathbf{b}.\mathbf{b}}(\mathbf{a} \times \mathbf{b})

C

r=xa×b\mathbf{r} = x\mathbf{a} \times \mathbf{b}

D

r=xb×a\mathbf{r} = x\mathbf{b} \times \mathbf{a}

Answer

r=xa+1a.a(a×b)\mathbf{r} = x\mathbf{a} + \frac{1}{\mathbf{a}.\mathbf{a}}(\mathbf{a} \times \mathbf{b})

Explanation

Solution

Since a,b\mathbf{a},\mathbf{b} and a×b\mathbf{a} \times \mathbf{b} are non-coplanar,

hence r=xa+yb+z(a×b)\mathbf{r} = x\mathbf{a} + y\mathbf{b} + z(\mathbf{a} \times \mathbf{b}) for some scalars x,yx,y and z.z.

Now, b=r×a={xa+yb+z(a×b)}×a\mathbf{b} = \mathbf{r} \times \mathbf{a} = \left\{ x\mathbf{a} + y\mathbf{b} + z(\mathbf{a} \times \mathbf{b}) \right\} \times \mathbf{a}

=y(b×a)+z[(a×b)×a]=y(a×b)z[a×(a×b)]= y(\mathbf{b} \times \mathbf{a}) + z\lbrack(\mathbf{a} \times \mathbf{b}) \times \mathbf{a}\rbrack = - y(\mathbf{a} \times \mathbf{b}) - z\lbrack\mathbf{a} \times (\mathbf{a} \times \mathbf{b})\rbrack

=y(a×b)z[(a.b)a(a.a)b]= - y(\mathbf{a} \times \mathbf{b}) - z\lbrack(\mathbf{a}.\mathbf{b})\mathbf{a} - (\mathbf{a}.\mathbf{a})\mathbf{b}\rbrack

=y(a×b)+z(a.a)b= - y(\mathbf{a} \times \mathbf{b}) + z(\mathbf{a}.\mathbf{a})\mathbf{b}, {a.b=0}\left\{ \because\mathbf{a}.\mathbf{b} = 0 \right\}

y=0\Rightarrow y = 0 and z=1(a.a)r=xa+1a.a(a×b)z = \frac{1}{(\mathbf{a}.\mathbf{a})} \Rightarrow \mathbf{r} = x\mathbf{a} + \frac{1}{\mathbf{a}.\mathbf{a}}(\mathbf{a} \times \mathbf{b}).