Solveeit Logo

Question

Mathematics Question on Sequence and series

If the non-zero numbers x,y,zx, y, z are in A.P. and tan1x,tan1y,tan1z\tan^{-1}x, \tan^{-1}y, \tan^{-1}z are also in A.P., then

A

x=y=zx = y = z

B

xy=yzxy = yz

C

x2=yzx^2 = yz

D

z2=xyz^2 = xy

Answer

x=y=zx = y = z

Explanation

Solution

Since x,y,zx, y, z are in A.P.A.P . 2y=x+z...(1) \therefore 2y = x+z \quad...\left(1\right) Since tan1x,tan1y,tan1ztan^{-1}x, tan^{-1}y, tan^{-1}z and in A.P.A.P. 2tan1y=tan1x+tan1z\therefore 2tan^{-1}y = tan^{-1}x+tan^{-1}z tan12y1y2=tan1x+z1xztan^{-1} \frac{2y}{1-y^{2}} = tan^{-1}\frac{ x+z}{1-xz} 2y1y2=x+z1xz\Rightarrow \frac{2y}{1-y^{2}} =\frac{ x+z}{1-xz} x,y,z \therefore x, y, z are in H.P.H.P. Also y2=xzy^{2} = xz x,y,z \Rightarrow x, y, z are in G.P.G.P. x=y=z\therefore x= y=z