Solveeit Logo

Question

Question: If the non-zero numbers a, b, c are in A.P. and \({\tan ^{ - 1}}a\) , \({\tan ^{ - 1}}b\) and \({\ta...

If the non-zero numbers a, b, c are in A.P. and tan1a{\tan ^{ - 1}}a , tan1b{\tan ^{ - 1}}b and tan1c{\tan ^{ - 1}}c are also in A.P., then prove that a=b=ca = b = c and b2=ac{b^2} = ac .

Explanation

Solution

If x, y, z are in A.P., then 2x=y+z2x = y + z .
Using the same property as mentioned above, find the relation between a, b, c and tan1a{\tan ^{ - 1}}a , tan1b{\tan ^{ - 1}}b , tan1c{\tan ^{ - 1}}c .
Now, using tan1x+tan1y=tan1(x+y1xy){\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right) , and solving it further, we will get to prove the relation b2=ac{b^2} = ac .
Now, using b2=ac{b^2} = ac , prove a=b=ca = b = c .

Complete step-by-step answer:
It is given that the non-zero numbers a, b, c are in A.P.
  2b=a+c\therefore \;2b = a + c ... (1)
Also, tan1a{\tan ^{ - 1}}a , tan1b{\tan ^{ - 1}}b and tan1c{\tan ^{ - 1}}c are also in A.P.
2tan1b=tan1a+tan1c\therefore 2{\tan ^{ - 1}}b = {\tan ^{ - 1}}a + {\tan ^{ - 1}}c
Now, substituting 2tan1b=tan1(2b1b2)2{\tan ^{ - 1}}b = {\tan ^{ - 1}}\left( {\dfrac{{2b}}{{1 - {b^2}}}} \right) and tan1a+tan1c=tan1(a+c1ac){\tan ^{ - 1}}a + {\tan ^{ - 1}}c = {\tan ^{ - 1}}\left( {\dfrac{{a + c}}{{1 - ac}}} \right) .
tan1(2b1b2)=tan1(a+c1ac) 2b1b2=a+c1ac  \therefore {\tan ^{ - 1}}\left( {\dfrac{{2b}}{{1 - {b^2}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{a + c}}{{1 - ac}}} \right) \\\ \therefore \dfrac{{2b}}{{1 - {b^2}}} = \dfrac{{a + c}}{{1 - ac}} \\\
Substitute 2b=a+c2b = a + c , from equation (1)
a+c1b2=a+c1ac 11b2=11ac 1ac=1b2 b2=11+ac  \therefore \dfrac{{a + c}}{{1 - {b^2}}} = \dfrac{{a + c}}{{1 - ac}} \\\ \therefore \dfrac{1}{{1 - {b^2}}} = \dfrac{1}{{1 - ac}} \\\ \therefore 1 - ac = 1 - {b^2} \\\ \therefore {b^2} = 1 - 1 + ac \\\
b2=ac\therefore {b^2} = ac (Proved)
Now, to prove a=b=ca = b = c , we have to take help of b2=ac{b^2} = ac .
b2=ac 4b2=4ac (2b)24ac=0  \therefore {b^2} = ac \\\ \therefore 4{b^2} = 4ac \\\ \therefore {\left( {2b} \right)^2} - 4ac = 0 \\\
Substitute 2b=a+c2b = a + c from equation (1)
(a+c)24ac=0 a2+2ac+c24ac=0 a22ac+c2=0 (ac)2=0 ac=0 a=c  \therefore {\left( {a + c} \right)^2} - 4ac = 0 \\\ \therefore {a^2} + 2ac + {c^2} - 4ac = 0 \\\ \therefore {a^2} - 2ac + {c^2} = 0 \\\ \therefore {\left( {a - c} \right)^2} = 0 \\\ \therefore a - c = 0 \\\ \therefore a = c \\\
We have a=ca = c ... (2)
Now, substitute a=ca = c in b2=ac{b^2} = ac .
b2=a(a) b2=a2 b=a  \therefore {b^2} = a\left( a \right) \\\ \therefore {b^2} = {a^2} \\\ \therefore b = a \\\
We now have, a=ba = b and also a=ca = c .
Thus, a=b=ca = b = c . (Proved)

Note: Here, to prove a=b=ca = b = c , we have to take help of b2=ac{b^2} = ac by multiplying the whole equation by 4.
Also, we know that (a+c)24ac=0{\left( {a + c} \right)^2} - 4ac = 0 can directly be written as (ac)2=0{\left( {a - c} \right)^2} = 0 by using property (x+y)24xy=(xy)2{\left( {x + y} \right)^2} - 4xy = {\left( {x - y} \right)^2} . So, to get the answer quickly, we can directly write (a+c)24ac=0{\left( {a + c} \right)^2} - 4ac = 0 as (ac)2=0{\left( {a - c} \right)^2} = 0 and not solve (a+c)24ac=0{\left( {a + c} \right)^2} - 4ac = 0 to get (ac)2=0{\left( {a - c} \right)^2} = 0 .