Solveeit Logo

Question

Question: If the minimum value of f(x) = x<sup>2</sup> + 2bx + 2c<sup>2</sup> is greater than the maximum valu...

If the minimum value of f(x) = x2 + 2bx + 2c2 is greater than the maximum value of g(x) = – x2 – 2cx + b2 then

(x being real) -

A

| c | >b3\frac{|b|}{\sqrt{3}}

B

c2\frac{|c|}{\sqrt{2}}> | b |

C

– 1 < c <2\sqrt{2}b

D

No real value of b and c exist.

Answer

c2\frac{|c|}{\sqrt{2}}> | b |

Explanation

Solution

\ f(x)(x + b)2+(2c2 – b2)

and g(x) = (b2 + c2) –(x – c)2

\ min. value of f(x) = 2c2– b2

max. value of g(x) = b2+ c2

\ 2c2 – b2 > b2 + c2 Ž c2 > b2

Ž c > 2\sqrt{2}b Ž c2\frac{|c|}{\sqrt{2}} > | b |