Solveeit Logo

Question

Question: If the midpoint of the line segment joining the points \( A\left( 3,4 \right) \) and \( B\left( k,6 ...

If the midpoint of the line segment joining the points A(3,4)A\left( 3,4 \right) and B(k,6)B\left( k,6 \right) is P(x,y)P\left( x,y \right) and x+y10=0x+y-10=0 , find the value of k.

Explanation

Solution

Hint : First of all we will use the formula of midpoint i.e. H(x3,y3)=((x1+x22),(y1+y22))H\left( {{x}_{3}},{{y}_{3}} \right)=\left( \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right),\left( \dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right) \right) , to find the value of midpoint P(x,y)P\left( x,y \right) of points A(3,4)A\left( 3,4 \right) and B(k,6)B\left( k,6 \right) . Now, as all the points lie on a line segment they must satisfy the equation of line segment i.e. x+y10=0x+y-10=0 , so, by substituting the values of x and y in the equation we will find the value of k.

Complete step-by-step answer :
In question we are given that midpoint of points A(3,4)A\left( 3,4 \right) and B(k,6)B\left( k,6 \right) is P(x,y)P\left( x,y \right) and the equation of line segment is given as, x+y10=0x+y-10=0 . Figure will be like this.

We are asked to find the value of k, so, first of all, the equation for midpoint H=(x3,y3)H=\left( {{x}_{3}},{{y}_{3}} \right) of two points D(x1,y1)D\left( {{x}_{1}},{{y}_{1}} \right) and E(x2,y2)E\left( {{x}_{2}},{{y}_{2}} \right) , can be given as,
x3=(x1+x22){{x}_{3}}=\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right) and y3=(y1+y22){{y}_{3}}=\left( \dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right) or H(x3,y3)=((x1+x22),(y1+y22))H\left( {{x}_{3}},{{y}_{3}} \right)=\left( \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right),\left( \dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right) \right)
Here, x1=3{{x}_{1}}=3 , y1=4{{y}_{1}}=4 , x2=k{{x}_{2}}=k , y2=6{{y}_{2}}=6 , x3=x{{x}_{3}}=x , y3=y{{y}_{3}}=y , on substituting these values in above formula, we will get,
P(x,y)=((3+k2),(4+62))P\left( x,y \right)=\left( \left( \dfrac{3+k}{2} \right),\left( \dfrac{4+6}{2} \right) \right)
P(x,y)=((3+k2),5)\Rightarrow P\left( x,y \right)=\left( \left( \dfrac{3+k}{2} \right),5 \right)
x=3+k2, y=5\Rightarrow x=\dfrac{3+k}{2},\ y=5
As, the point P lies on line segment its value of x and y satisfies the equation, x+y10=0x+y-10=0 , so, on substituting the value of x and y we will get,
3+k2+510=0\dfrac{3+k}{2}+5-10=0
3+k25=0\Rightarrow \dfrac{3+k}{2}-5=0
3+k+2(5)=0\Rightarrow 3+k+2\left( -5 \right)=0
3+k10=0k7=0\Rightarrow 3+k-10=0\Rightarrow k-7=0
k=7\Rightarrow k=7
Thus, we can say that the value of k is 7.

Note : There are chances of students getting the wrong answer while substituting B(k,6)B\left( k,6 \right) directly in the equation x+y10=0x+y-10=0 . By doing this, we get the equation as k+610=0k+6-10=0 . So, on solving we will get a value of k as k=4k=4 which leads to an incorrect answer. So, do not make this mistake.