Solveeit Logo

Question

Mathematics Question on Straight lines

If the medians ADAD and BEBE of the triangle with vertices A(0,b),B(0,0),C(a,0)A(0, b), B(0, 0), C(a, 0) are mutually perpendicular, then

A

b=2ab = \sqrt{2a}

B

a=±2ba = \pm \sqrt{2b}

C

b=2ab = - \sqrt{2a}

D

b=ab = a

Answer

a=±2ba = \pm \sqrt{2b}

Explanation

Solution

ADAD and BEBE are perpendicular.


DD and EE are the mid points of BCBC and ACAC respectively.
\therefore Coordinates of
D=(0+a2,0+a2)=(a2,0)D = \left( \frac{0+a}{2} , \frac{0+a}{2} \right) = \left( \frac{a}{2} , 0\right)
ADBEAD \bot BE
\therefore Slope of AD ×\times Slope of BE = -1
(0ba20)×(b20a20)=1\left(\frac{0-b}{\frac{a}{2} -0}\right)\times\left(\frac{\frac{b}{2} -0}{\frac{a}{2} -0}\right) = -1
b22=a24a2=2b2a=±2b.\Rightarrow \frac{b^{2}}{2} = \frac{a^{2}}{4} \Rightarrow a^{2} = 2b^{2} \Rightarrow a = \pm\sqrt{2} b.