Solveeit Logo

Question

Mathematics Question on Statistics

If the median and the range of four numbers {x, y, 2x + y, x - y}, where 0 < y < x < 2y, are 10 and 28 respectively, then the mean of the numbers is :

A

18

B

10

C

5

D

14

Answer

14

Explanation

Solution

Since 0 < y < x < 2y y>x2xy<x2\therefore \, y > \frac{x}{2} \Rightarrow \, x - y < \frac{x}{2} xy<y<x<2x+y\therefore \, x -y < y < x < 2x + y Hence median =y+x2=10= \frac{y + x}{2} = 10 x+y=20\Rightarrow \, x + y = 20 ...(i) And range = (2x + y) - (x - y) = x + 2y But range = 28 \therefore x + 2y = 28 ...(ii) From equations (i) and (ii), x = 12, y = 8 \therefore Mean =(xy)+y+x+(2x+y)4=4x+y4 = \frac{\left(x-y\right) +y +x + \left(2x+y\right)}{4} = \frac{4x+y}{4} =x+y4=12+84=14= x + \frac{y}{4} = 12 + \frac{8}{4} =14